forked from tdewolff/canvas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
util.go
839 lines (728 loc) · 25.7 KB
/
util.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
package canvas
import (
"encoding/hex"
"fmt"
"image/color"
"math"
"strings"
"github.com/tdewolff/minify/v2"
"golang.org/x/image/math/fixed"
)
// Epsilon is the smallest number below which we assume the value to be zero. This is to avoid numerical floating point issues.
var Epsilon = 1e-10
// Precision is the number of significant digits at which floating point value will be printed to output formats.
var Precision = 8
// Equal returns true if a and b are Equal with tolerance Epsilon.
func Equal(a, b float64) bool {
return math.Abs(a-b) < Epsilon
}
// angleNorm returns the angle theta in the range [0,2PI).
func angleNorm(theta float64) float64 {
theta = math.Mod(theta, 2.0*math.Pi)
if theta < 0.0 {
theta += 2.0 * math.Pi
}
return theta
}
// angleBetween is true when theta is in range [lower,upper] including the end points. Angles can be outside the [0,2PI) range.
func angleBetween(theta, lower, upper float64) bool {
sweep := lower <= upper // true for CCW, ie along a positive angle
theta = angleNorm(theta - lower)
upper = angleNorm(upper - lower)
if sweep && theta <= upper || !sweep && theta >= upper {
return true
}
return false
}
////////////////////////////////////////////////////////////////
type num float64
func (f num) String() string {
s := fmt.Sprintf("%.*g", Precision, f)
if num(math.MaxInt32) < f || f < num(math.MinInt32) {
if i := strings.IndexAny(s, ".eE"); i == -1 {
s += ".0"
}
}
return string(minify.Number([]byte(s), Precision))
}
type dec float64
func (f dec) String() string {
s := fmt.Sprintf("%.*f", Precision, f)
s = string(minify.Decimal([]byte(s), Precision))
if dec(math.MaxInt32) < f || f < dec(math.MinInt32) {
if i := strings.IndexByte(s, '.'); i == -1 {
s += ".0"
}
}
return s
}
// CSSColor is a string formatter to convert a color.RGBA to a CSS color (hexadecimal or using rgba()).
type CSSColor color.RGBA
func (color CSSColor) String() string {
if color.A == 255 {
buf := make([]byte, 7)
buf[0] = '#'
hex.Encode(buf[1:], []byte{color.R, color.G, color.B})
if buf[1] == buf[2] && buf[3] == buf[4] && buf[5] == buf[6] {
buf[2] = buf[3]
buf[3] = buf[5]
buf = buf[:4]
}
return string(buf)
} else if color.A == 0 {
return "rgba(0,0,0,0)"
}
a := float64(color.A) / 255.0
return fmt.Sprintf("rgba(%d,%d,%d,%v)", int(float64(color.R)/a), int(float64(color.G)/a), int(float64(color.B)/a), dec(a))
}
////////////////////////////////////////////////////////////////
func toP26_6(p Point) fixed.Point26_6 {
return fixed.Point26_6{toI26_6(p.X), toI26_6(p.Y)}
}
func fromP26_6(f fixed.Point26_6) Point {
return Point{float64(f.X) / 64.0, float64(f.Y) / 64.0}
}
func toI26_6(f float64) fixed.Int26_6 {
return fixed.Int26_6(f * 64.0)
}
func fromI26_6(f fixed.Int26_6) float64 {
return float64(f) / 64.0
}
////////////////////////////////////////////////////////////////
var Origin = Point{0.0, 0.0}
// Point is a coordinate in 2D space. OP refers to the line that goes through the origin (0,0) and this point (x,y).
type Point struct {
X, Y float64
}
// IsZero returns true if P is exactly zero.
func (p Point) IsZero() bool {
return p.X == 0.0 && p.Y == 0.0
}
// Equals returns true if P and Q are equal with tolerance Epsilon.
func (p Point) Equals(q Point) bool {
return Equal(p.X, q.X) && Equal(p.Y, q.Y)
}
// Neg negates x and y.
func (p Point) Neg() Point {
return Point{-p.X, -p.Y}
}
// Add adds Q to P.
func (p Point) Add(q Point) Point {
return Point{p.X + q.X, p.Y + q.Y}
}
// Sub subtracts Q from P.
func (p Point) Sub(q Point) Point {
return Point{p.X - q.X, p.Y - q.Y}
}
// Mul multiplies x and y by f.
func (p Point) Mul(f float64) Point {
return Point{f * p.X, f * p.Y}
}
// Div divides x and y by f.
func (p Point) Div(f float64) Point {
return Point{p.X / f, p.Y / f}
}
// Rot90CW rotates the line OP by 90 degrees CW.
func (p Point) Rot90CW() Point {
return Point{p.Y, -p.X}
}
// Rot90CCW rotates the line OP by 90 degrees CCW.
func (p Point) Rot90CCW() Point {
return Point{-p.Y, p.X}
}
// Rot rotates the line OP by phi radians CCW.
func (p Point) Rot(phi float64, p0 Point) Point {
sinphi, cosphi := math.Sincos(phi)
return Point{
p0.X + cosphi*(p.X-p0.X) - sinphi*(p.Y-p0.Y),
p0.Y + sinphi*(p.X-p0.X) + cosphi*(p.Y-p0.Y),
}
}
// Dot returns the dot product between OP and OQ, i.e. zero if perpendicular and |OP|*|OQ| if aligned.
func (p Point) Dot(q Point) float64 {
return p.X*q.X + p.Y*q.Y
}
// PerpDot returns the perp dot product between OP and OQ, i.e. zero if aligned and |OP|*|OQ| if perpendicular.
func (p Point) PerpDot(q Point) float64 {
return p.X*q.Y - p.Y*q.X
}
// Length returns the length of OP.
func (p Point) Length() float64 {
return math.Hypot(p.X, p.Y)
}
// Slope returns the slope between OP, i.e. y/x.
func (p Point) Slope() float64 {
return p.Y / p.X
}
// Angle returns the angle in radians between the x-axis and OP.
func (p Point) Angle() float64 {
return math.Atan2(p.Y, p.X)
}
// AngleBetween returns the angle between OP and OQ.
func (p Point) AngleBetween(q Point) float64 {
return math.Atan2(p.PerpDot(q), p.Dot(q))
}
// Norm normalized OP to be of given length.
func (p Point) Norm(length float64) Point {
d := p.Length()
if Equal(d, 0.0) {
return Point{}
}
return Point{p.X / d * length, p.Y / d * length}
}
// Interpolate returns a point on PQ that is linearly interpolated by t in [0,1], i.e. t=0 returns P and t=1 returns Q.
func (p Point) Interpolate(q Point, t float64) Point {
return Point{(1-t)*p.X + t*q.X, (1-t)*p.Y + t*q.Y}
}
// String returns the string representation of a point, such as "(x,y)".
func (p Point) String() string {
return fmt.Sprintf("(%g,%g)", p.X, p.Y)
}
////////////////////////////////////////////////////////////////
// Rect is a rectangle in 2D defined by a position and its width and height.
type Rect struct {
X, Y, W, H float64
}
// Equals returns true if rectangles are equal with tolerance Epsilon.
func (r Rect) Equals(q Rect) bool {
return Equal(r.X, q.X) && Equal(r.Y, q.Y) && Equal(r.W, q.W) && Equal(r.H, q.H)
}
// Move translates the rect.
func (r Rect) Move(p Point) Rect {
r.X += p.X
r.Y += p.Y
return r
}
// Add returns a rect that encompasses both the current rect and the given rect.
func (r Rect) Add(q Rect) Rect {
if q.W == 0.0 || q.H == 0 {
return r
} else if r.W == 0.0 || r.H == 0 {
return q
}
x0 := math.Min(r.X, q.X)
y0 := math.Min(r.Y, q.Y)
x1 := math.Max(r.X+r.W, q.X+q.W)
y1 := math.Max(r.Y+r.H, q.Y+q.H)
return Rect{x0, y0, x1 - x0, y1 - y0}
}
// Transform transforms the rectangle by affine transformation matrix m and returns the new bounds of that rectangle.
func (r Rect) Transform(m Matrix) Rect {
p0 := m.Dot(Point{r.X, r.Y})
p1 := m.Dot(Point{r.X + r.W, r.Y})
p2 := m.Dot(Point{r.X + r.W, r.Y + r.H})
p3 := m.Dot(Point{r.X, r.Y + r.H})
xmin := math.Min(p0.X, math.Min(p1.X, math.Min(p2.X, p3.X)))
xmax := math.Max(p0.X, math.Max(p1.X, math.Max(p2.X, p3.X)))
ymin := math.Min(p0.Y, math.Min(p1.Y, math.Min(p2.Y, p3.Y)))
ymax := math.Max(p0.Y, math.Max(p1.Y, math.Max(p2.Y, p3.Y)))
return Rect{xmin, ymin, xmax - xmin, ymax - ymin}
}
// ToPath converts the rectangle to a path.
func (r Rect) ToPath() *Path {
return Rectangle(r.W, r.H).Translate(r.X, r.Y)
}
// String returns a string representation of r such as "(xmin,ymin)-(xmax,ymax)".
func (r Rect) String() string {
return fmt.Sprintf("(%g,%g)-(%g,%g)", r.X, r.Y, r.X+r.W, r.Y+r.H)
}
////////////////////////////////////////////////////////////////
// Matrix is used for affine transformations, which are transformations such as translation, scaling, reflection, rotation, shear stretching. See https://en.wikipedia.org/wiki/Affine_transformation#Image_transformation for an overview of the transformations. The affine transformation matrix contains all transformations in a matrix, where we can concatenate transformations to apply them sequentially. Be aware that concatenated transformations will be evaluated right-to-left! So that Identity.Rotate(30).Translate(20,0) will first translate 20 points horizontally and then rotate 30 degrees counter clockwise.
type Matrix [2][3]float64
// Identity is the identity affine transformation matrix, i.e. transforms any point to itself.
var Identity = Matrix{
{1.0, 0.0, 0.0},
{0.0, 1.0, 0.0},
}
// Mul multiplies the current matrix by the given matrix, i.e. combining transformations.
func (m Matrix) Mul(q Matrix) Matrix {
return Matrix{{
m[0][0]*q[0][0] + m[0][1]*q[1][0],
m[0][0]*q[0][1] + m[0][1]*q[1][1],
m[0][0]*q[0][2] + m[0][1]*q[1][2] + m[0][2],
}, {
m[1][0]*q[0][0] + m[1][1]*q[1][0],
m[1][0]*q[0][1] + m[1][1]*q[1][1],
m[1][0]*q[0][2] + m[1][1]*q[1][2] + m[1][2],
}}
}
// Dot returns the dot product between the matrix and the given vector, i.e. applying the transformation.
func (m Matrix) Dot(p Point) Point {
return Point{
m[0][0]*p.X + m[0][1]*p.Y + m[0][2],
m[1][0]*p.X + m[1][1]*p.Y + m[1][2],
}
}
// Translate adds a translation in x and y.
func (m Matrix) Translate(x, y float64) Matrix {
return m.Mul(Matrix{
{1.0, 0.0, x},
{0.0, 1.0, y},
})
}
// Rotate adds a rotation transformation with rot in degree counter clockwise.
func (m Matrix) Rotate(rot float64) Matrix {
sintheta, costheta := math.Sincos(rot * math.Pi / 180.0)
return m.Mul(Matrix{
{costheta, -sintheta, 0.0},
{sintheta, costheta, 0.0},
})
}
// RotateAbout adds a rotation transformation about (x,y) with rot in degrees counter clockwise.
func (m Matrix) RotateAbout(rot, x, y float64) Matrix {
return m.Translate(x, y).Rotate(rot).Translate(-x, -y)
}
// Scale adds a scaling transformation in sx and sy. When scale is negative it will flip those axes.
func (m Matrix) Scale(sx, sy float64) Matrix {
return m.Mul(Matrix{
{sx, 0.0, 0.0},
{0.0, sy, 0.0},
})
}
// ScaleAbout adds a scaling transformation about (x,y) in sx and sy. When scale is negative it will flip those axes.
func (m Matrix) ScaleAbout(sx, sy, x, y float64) Matrix {
return m.Translate(x, y).Scale(sx, sy).Translate(-x, -y)
}
// Shear adds a shear transformation with sx the horizontal shear and sy the vertical shear.
func (m Matrix) Shear(sx, sy float64) Matrix {
return m.Mul(Matrix{
{1.0, sx, 0.0},
{sy, 1.0, 0.0},
})
}
// ShearAbout adds a shear transformation about (x,y) with sx the horizontal shear and sy the vertical shear.
func (m Matrix) ShearAbout(sx, sy, x, y float64) Matrix {
return m.Translate(x, y).Shear(sx, sy).Translate(-x, -y)
}
// ReflectX adds a horizontal reflection transformation, i.e. Scale(-1,1).
func (m Matrix) ReflectX() Matrix {
return m.Scale(-1.0, 1.0)
}
// ReflectXAbout adds a horizontal reflection transformation about x.
func (m Matrix) ReflectXAbout(x float64) Matrix {
return m.Translate(x, 0.0).Scale(-1.0, 1.0).Translate(-x, 0.0)
}
// ReflectY adds a vertical reflection transformation, i.e. Scale(1,-1).
func (m Matrix) ReflectY() Matrix {
return m.Scale(1.0, -1.0)
}
// ReflectYAbout adds a vertical reflection transformation about y.
func (m Matrix) ReflectYAbout(y float64) Matrix {
return m.Translate(0.0, y).Scale(1.0, -1.0).Translate(0.0, -y)
}
// T returns the matrix transpose.
func (m Matrix) T() Matrix {
m[0][1], m[1][0] = m[1][0], m[0][1]
return m
}
// Det returns the matrix determinant.
func (m Matrix) Det() float64 {
return m[0][0]*m[1][1] - m[0][1]*m[1][0]
}
// Inv returns the matrix inverse.
func (m Matrix) Inv() Matrix {
det := m.Det()
if Equal(det, 0.0) {
panic("determinant of affine transformation matrix is zero")
}
return Matrix{{
m[1][1] / det,
-m[0][1] / det,
-(m[1][1]*m[0][2] - m[0][1]*m[1][2]) / det,
}, {
-m[1][0] / det,
m[0][0] / det,
-(-m[1][0]*m[0][2] + m[0][0]*m[1][2]) / det,
}}
}
// Eigen returns the matrix eigenvalues and eigenvectors. The first eigenvalue is related to the first eigenvector, and so for the second pair. Eigenvectors are normalized.
func (m Matrix) Eigen() (float64, float64, Point, Point) {
if Equal(m[1][0], 0.0) && Equal(m[0][1], 0.0) {
return m[0][0], m[1][1], Point{1.0, 0.0}, Point{0.0, 1.0}
}
lambda1, lambda2 := solveQuadraticFormula(1.0, -m[0][0]-m[1][1], m.Det())
if math.IsNaN(lambda1) && math.IsNaN(lambda2) {
// either m[0][0] or m[1][1] is NaN or the the affine matrix has no real eigenvalues
return lambda1, lambda2, Point{}, Point{}
} else if math.IsNaN(lambda2) {
lambda2 = lambda1
}
// see http://www.math.harvard.edu/archive/21b_fall_04/exhibits/2dmatrices/index.html
var v1, v2 Point
if !Equal(m[1][0], 0.0) {
v1 = Point{lambda1 - m[1][1], m[1][0]}.Norm(1.0)
v2 = Point{lambda2 - m[1][1], m[1][0]}.Norm(1.0)
} else if !Equal(m[0][1], 0.0) {
v1 = Point{m[0][1], lambda1 - m[0][0]}.Norm(1.0)
v2 = Point{m[0][1], lambda2 - m[0][0]}.Norm(1.0)
}
return lambda1, lambda2, v1, v2
}
// Pos extracts the translation component as (tx,ty).
func (m Matrix) Pos() (float64, float64) {
return m[0][2], m[1][2]
}
// Decompose extracts the translation, rotation, scaling and rotation components (applied in the reverse order) as (tx, ty, theta, sx, sy, phi) with rotation counter clockwise. This corresponds to Identity.Translate(tx, ty).Rotate(theta).Scale(sx, sy).Rotate(phi).
func (m Matrix) Decompose() (float64, float64, float64, float64, float64, float64) {
// see https://math.stackexchange.com/questions/861674/decompose-a-2d-arbitrary-transform-into-only-scaling-and-rotation
E := (m[0][0] + m[1][1]) / 2.0
F := (m[0][0] - m[1][1]) / 2.0
G := (m[0][1] + m[1][0]) / 2.0
H := (m[0][1] - m[1][0]) / 2.0
Q, R := math.Sqrt(E*E+H*H), math.Sqrt(F*F+G*G)
sx, sy := Q+R, Q-R
a1, a2 := math.Atan2(G, F), math.Atan2(H, E)
theta := (a2 - a1) / 2.0 * 180.0 / math.Pi
phi := (a2 + a1) / 2.0 * 180.0 / math.Pi
if Equal(sx, 1.0) && Equal(sy, 1.0) {
theta += phi
phi = 0.0
}
return m[0][2], m[1][2], theta, sx, sy, phi
}
// IsTranslation is true if the matrix consists of only translational components, i.e. no rotation, scaling, or skew transformations.
func (m Matrix) IsTranslation() bool {
return Equal(m[0][0], 1.0) && Equal(m[0][1], 0.0) && Equal(m[1][0], 0.0) && Equal(m[1][1], 1.0)
}
// IsRigid is true if the matrix is orthogonal and consists of only translation, rotation, and reflection transformations.
func (m Matrix) IsRigid() bool {
a := m[0][0]*m[0][0] + m[0][1]*m[0][1]
b := m[1][0]*m[1][0] + m[1][1]*m[1][1]
c := m[0][0]*m[1][0] + m[0][1]*m[1][1]
return Equal(a, 1.0) && Equal(b, 1.0) && Equal(c, 0.0)
}
// IsSimilarity is true if the matrix consists of only translation, rotation, reflection, and scaling transformations.
func (m Matrix) IsSimilarity() bool {
a := m[0][0]*m[0][0] + m[0][1]*m[0][1]
b := m[1][0]*m[1][0] + m[1][1]*m[1][1]
c := m[0][0]*m[1][0] + m[0][1]*m[1][1]
return Equal(a, b) && Equal(c, 0.0)
}
// Equals returns true if both matrices are equal with a tolerance of Epsilon.
func (m Matrix) Equals(q Matrix) bool {
return Equal(m[0][0], q[0][0]) && Equal(m[0][1], q[0][1]) && Equal(m[1][0], q[1][0]) && Equal(m[1][1], q[1][1]) && Equal(m[0][2], q[0][2]) && Equal(m[1][2], q[1][2])
}
// String returns a string representation of the affine transformation matrix as six values, where [a b c; d e f; g h i] will be written as "a b d e c f" as g, h and i have fixed values (0, 0 and 1 respectively).
func (m Matrix) String() string {
return fmt.Sprintf("(%g %g; %g %g) + (%g,%g)", m[0][0], m[0][1], m[1][0], m[1][1], m[0][2], m[1][2])
}
// ToSVG writes out the matrix in SVG notation, taking care of the proper order of transformations.
func (m Matrix) ToSVG(h float64) string {
tx, ty, theta, sx, sy, phi := m.Decompose()
s := &strings.Builder{}
if !Equal(m[0][2], 0.0) || !Equal(m[1][2], 0.0) {
fmt.Fprintf(s, " translate(%v,%v)", dec(tx), dec(h-ty))
}
if !Equal(theta, 0.0) {
fmt.Fprintf(s, " rotate(%v)", dec(theta))
}
if !Equal(sx, 1.0) || !Equal(sy, 1.0) {
fmt.Fprintf(s, " scale(%v,%v)", dec(sx), dec(sy))
}
if !Equal(phi, 0.0) {
fmt.Fprintf(s, " rotate(%v)", dec(phi))
}
if s.Len() == 0 {
return ""
}
return s.String()[1:]
}
////////////////////////////////////////////////////////////////
// Numerically stable quadratic formula, lowest root is returned first, see https://math.stackexchange.com/a/2007723
func solveQuadraticFormula(a, b, c float64) (float64, float64) {
if a == 0.0 {
if b == 0.0 {
if c == 0.0 {
// all terms disappear, all x satisfy the solution
return 0.0, math.NaN()
}
// linear term disappears, no solutions
return math.NaN(), math.NaN()
}
// quadratic term disappears, solve linear equation
return -c / b, math.NaN()
}
if c == 0.0 {
// no constant term, one solution at zero and one from solving linearly
return 0.0, -b / a
}
discriminant := b*b - 4.0*a*c
if discriminant < 0.0 {
return math.NaN(), math.NaN()
} else if discriminant == 0.0 {
return -b / (2.0 * a), math.NaN()
}
// Avoid catastrophic cancellation, which occurs when we subtract two nearly equal numbers and causes a large error this can be the case when 4*a*c is small so that sqrt(discriminant) -> b, and the sign of b and in front of the radical are the same instead we calculate x where b and the radical have different signs, and then use this result in the analytical equivalent of the formula, called the Citardauq Formula.
q := math.Sqrt(discriminant)
if b < 0.0 {
// apply sign of b
q = -q
}
x1 := -(b + q) / (2.0 * a)
x2 := c / (a * x1)
if x2 < x1 {
x1, x2 = x2, x1
}
return x1, x2
}
// see https://www.geometrictools.com/Documentation/LowDegreePolynomialRoots.pdf
// see https://github.com/thelonious/kld-polynomial/blob/development/lib/Polynomial.js
func solveCubicFormula(a, b, c, d float64) (float64, float64, float64) {
x1, x2, x3 := math.NaN(), math.NaN(), math.NaN()
if Equal(a, 0.0) {
x1, x2 = solveQuadraticFormula(b, c, d)
} else {
// eliminate a
b /= a
c /= a
d /= a
bthird := b / 3.0
c0 := d - bthird*(c-2.0*bthird*bthird)
c1 := c - b*bthird
if Equal(c0, 0.0) {
if Equal(c1, 0.0) {
x1 = 0.0 - bthird
} else if c1 < 0.0 {
tmp := math.Sqrt(-c1)
x1 = -tmp - bthird
x2 = tmp - bthird
x3 = 0.0 - bthird
}
} else if Equal(c1, 0.0) {
if 0.0 < c0 {
x1 = -math.Cbrt(c0) - bthird
} else {
x1 = math.Cbrt(-c0) - bthird
}
} else {
delta := -(4.0*c1*c1*c1 + 27.0*c0*c0)
if Equal(delta, 0.0) {
delta = 0.0
}
if delta < 0.0 {
betaRe := -c0 / 2.0
betaIm := math.Sqrt(-delta/27.0) / 2.0
tmp := betaRe - betaIm
if 0 <= tmp {
x1 = math.Cbrt(tmp)
} else {
x1 = -math.Cbrt(-tmp)
}
tmp = betaRe + betaIm
if 0 <= tmp {
x1 += math.Cbrt(tmp)
} else {
x1 -= math.Cbrt(-tmp)
}
x1 -= bthird
} else if 0.0 < delta {
betaRe := -c0 / 2.0
betaIm := math.Sqrt(delta/27.0) / 2.0
theta := math.Atan2(betaIm, betaRe) / 3.0
sintheta, costheta := math.Sincos(theta)
distance := math.Sqrt(-c1 / 3.0) // same as rhoPowThird
tmp := distance * sintheta * math.Sqrt(3.0)
x1 = 2.0*distance*costheta - bthird
x2 = -distance*costheta - tmp - bthird
x3 = -distance*costheta + tmp - bthird
} else {
// reference implementations differ
tmp := -3.0 * c0 / (2.0 * c1)
x1 = tmp - bthird
x2 = -2.0*tmp - bthird
}
}
}
// sort
if x3 < x2 || math.IsNaN(x2) {
x2, x3 = x3, x2
}
if x2 < x1 || math.IsNaN(x1) {
x1, x2 = x2, x1
}
if x3 < x2 || math.IsNaN(x2) {
x2, x3 = x3, x2
}
return x1, x2, x3
}
type gaussLegendreFunc func(func(float64) float64, float64, float64) float64
// Gauss-Legendre quadrature integration from a to b with n=3, see https://pomax.github.io/bezierinfo/legendre-gauss.html for more values
func gaussLegendre3(f func(float64) float64, a, b float64) float64 {
c := (b - a) / 2.0
d := (a + b) / 2.0
Qd1 := f(-0.774596669*c + d)
Qd2 := f(d)
Qd3 := f(0.774596669*c + d)
return c * ((5.0/9.0)*(Qd1+Qd3) + (8.0/9.0)*Qd2)
}
// Gauss-Legendre quadrature integration from a to b with n=5
func gaussLegendre5(f func(float64) float64, a, b float64) float64 {
c := (b - a) / 2.0
d := (a + b) / 2.0
Qd1 := f(-0.90618*c + d)
Qd2 := f(-0.538469*c + d)
Qd3 := f(d)
Qd4 := f(0.538469*c + d)
Qd5 := f(0.90618*c + d)
return c * (0.236927*(Qd1+Qd5) + 0.478629*(Qd2+Qd4) + 0.568889*Qd3)
}
// Gauss-Legendre quadrature integration from a to b with n=7
func gaussLegendre7(f func(float64) float64, a, b float64) float64 {
c := (b - a) / 2.0
d := (a + b) / 2.0
Qd1 := f(-0.949108*c + d)
Qd2 := f(-0.741531*c + d)
Qd3 := f(-0.405845*c + d)
Qd4 := f(d)
Qd5 := f(0.405845*c + d)
Qd6 := f(0.741531*c + d)
Qd7 := f(0.949108*c + d)
return c * (0.129485*(Qd1+Qd7) + 0.279705*(Qd2+Qd6) + 0.381830*(Qd3+Qd5) + 0.417959*Qd4)
}
//func lookupMin(f func(float64) float64, xmin, xmax float64) float64 {
// const MaxIterations = 1000
// min := math.Inf(1)
// for i := 0; i <= MaxIterations; i++ {
// t := float64(i) / float64(MaxIterations)
// x := xmin + t*(xmax-xmin)
// y := f(x)
// if y < min {
// min = y
// }
// }
// return min
//}
//
//func gradientDescent(f func(float64) float64, xmin, xmax float64) float64 {
// const MaxIterations = 100
// const Delta = 0.0001
// const Rate = 0.01
//
// x := (xmin + xmax) / 2.0
// for i := 0; i < MaxIterations; i++ {
// dydx := (f(x+Delta) - f(x-Delta)) / 2.0 / Delta
// x -= Rate * dydx
// }
// return x
//}
// find value x for which f(x) = y in the interval x in [xmin, xmax] using the bisection method
func bisectionMethod(f func(float64) float64, y, xmin, xmax float64) float64 {
const MaxIterations = 100
const Tolerance = 0.001 // 0.1%
n := 0
toleranceX := math.Abs(xmax-xmin) * Tolerance
toleranceY := math.Abs(f(xmax)-f(xmin)) * Tolerance
var x float64
for {
x = (xmin + xmax) / 2.0
if n >= MaxIterations {
return x
}
dy := f(x) - y
if math.Abs(dy) < toleranceY || math.Abs(xmax-xmin)/2.0 < toleranceX {
return x
} else if dy > 0.0 {
xmax = x
} else {
xmin = x
}
n++
}
}
// polynomialApprox returns a function y(x) that maps the parameter x [xmin,xmax] to the integral of fp. For a circle tmin and tmax would be 0 and 2PI respectively for example. It also returns the total length of the curve. Implemented using M. Walter, A. Fournier, Approximate Arc Length Parametrization, Anais do IX SIBGRAPHI, p. 143--150, 1996, see https://www.visgraf.impa.br/sibgrapi96/trabs/pdf/a14.pdf
func polynomialApprox3(gaussLegendre gaussLegendreFunc, fp func(float64) float64, xmin, xmax float64) (func(float64) float64, float64) {
y1 := gaussLegendre(fp, xmin, xmin+(xmax-xmin)*1.0/3.0)
y2 := gaussLegendre(fp, xmin, xmin+(xmax-xmin)*2.0/3.0)
y3 := gaussLegendre(fp, xmin, xmax)
// We have four points on the y(x) curve at x0=0, x1=1/3, x2=2/3 and x3=1
// now obtain a polynomial that goes through these four points by solving the system of linear equations
// y(x) = a*x^3 + b*x^2 + c*x + d (NB: y0 = d = 0)
// [y1; y2; y3] = [1/27, 1/9, 1/3;
// 8/27, 4/9, 2/3;
// 1, 1, 1] * [a; b; c]
//
// After inverting:
// [a; b; c] = 0.5 * [ 27, -27, 9;
// -45, 36, -9;
// 18, -9, 2] * [y1; y2; y3]
// NB: y0 = d = 0
a := 13.5*y1 - 13.5*y2 + 4.5*y3
b := -22.5*y1 + 18.0*y2 - 4.5*y3
c := 9.0*y1 - 4.5*y2 + y3
return func(x float64) float64 {
x = (x - xmin) / (xmax - xmin)
return a*x*x*x + b*x*x + c*x
}, math.Abs(y3)
}
// invPolynomialApprox does the opposite of polynomialApprox, it returns a function x(y) that maps the parameter y [f(xmin),f(xmax)] to x [xmin,xmax]
func invPolynomialApprox3(gaussLegendre gaussLegendreFunc, fp func(float64) float64, xmin, xmax float64) (func(float64) float64, float64) {
f := func(t float64) float64 {
return math.Abs(gaussLegendre(fp, xmin, xmin+(xmax-xmin)*t))
}
f3 := f(1.0)
t1 := bisectionMethod(f, (1.0/3.0)*f3, 0.0, 1.0)
t2 := bisectionMethod(f, (2.0/3.0)*f3, 0.0, 1.0)
t3 := 1.0
// We have four points on the x(y) curve at y0=0, y1=1/3, y2=2/3 and y3=1
// now obtain a polynomial that goes through these four points by solving the system of linear equations
// x(y) = a*y^3 + b*y^2 + c*y + d (NB: x0 = d = 0)
// [x1; x2; x3] = [1/27, 1/9, 1/3;
// 8/27, 4/9, 2/3;
// 1, 1, 1] * [a*y3^3; b*y3^2; c*y3]
//
// After inverting:
// [a*y3^3; b*y3^2; c*y3] = 0.5 * [ 27, -27, 9;
// -45, 36, -9;
// 18, -9, 2] * [x1; x2; x3]
// NB: x0 = d = 0
a := (27.0*t1 - 27.0*t2 + 9.0*t3) / (2.0 * f3 * f3 * f3)
b := (-45.0*t1 + 36.0*t2 - 9.0*t3) / (2.0 * f3 * f3)
c := (18.0*t1 - 9.0*t2 + 2.0*t3) / (2.0 * f3)
return func(f float64) float64 {
t := a*f*f*f + b*f*f + c*f
return xmin + (xmax-xmin)*t
}, f3
}
func invSpeedPolynomialChebyshevApprox(N int, gaussLegendre gaussLegendreFunc, fp func(float64) float64, tmin, tmax float64) (func(float64) float64, float64) {
// TODO: find better way to determine N. For Arc 10 seems fine, for some Quads 10 is too low, for Cube depending on inflection points is maybe not the best indicator
// TODO: track efficiency, how many times is fp called? Does a look-up table make more sense?
fLength := func(t float64) float64 {
return math.Abs(gaussLegendre(fp, tmin, t))
}
totalLength := fLength(tmax)
t := func(L float64) float64 {
return bisectionMethod(fLength, L, tmin, tmax)
}
return polynomialChebyshevApprox(N, t, 0.0, totalLength, tmin, tmax), totalLength
}
func polynomialChebyshevApprox(N int, f func(float64) float64, xmin, xmax, ymin, ymax float64) func(float64) float64 {
fs := make([]float64, N)
for k := 0; k < N; k++ {
u := math.Cos(math.Pi * (float64(k+1) - 0.5) / float64(N))
fs[k] = f(xmin + (xmax-xmin)*(u+1.0)/2.0)
}
c := make([]float64, N)
for j := 0; j < N; j++ {
a := 0.0
for k := 0; k < N; k++ {
a += fs[k] * math.Cos(float64(j)*math.Pi*(float64(k+1)-0.5)/float64(N))
}
c[j] = (2.0 / float64(N)) * a
}
if ymax < ymin {
ymin, ymax = ymax, ymin
}
return func(x float64) float64 {
x = math.Min(xmax, math.Max(xmin, x))
u := (x-xmin)/(xmax-xmin)*2.0 - 1.0
a := 0.0
for j := 0; j < N; j++ {
a += c[j] * math.Cos(float64(j)*math.Acos(u))
}
y := -0.5*c[0] + a
if !math.IsNaN(ymin) && !math.IsNaN(ymax) {
y = math.Min(ymax, math.Max(ymin, y))
}
return y
}
}