diff --git a/scripts/subdetector_tests/material_scan.py b/scripts/subdetector_tests/material_scan.py index 148b35ed1..dd1afe3ee 100644 --- a/scripts/subdetector_tests/material_scan.py +++ b/scripts/subdetector_tests/material_scan.py @@ -1,7 +1,7 @@ # SPDX-License-Identifier: LGPL-3.0-or-later # Copyright (C) 2023 Chao Peng ''' - A script to scan the materials thickness (X0 or Lambda) by detectors over eta + A script to scan the materials thickness (X0 or Lambda) over eta It uses dd4hep::rec::MaterialManager::placementsBetween to check the material layers, and then uses the detector alignment to transform world coordinates to local coordiantes, and then assigns the materials to a detector based @@ -34,7 +34,6 @@ COLORS = ['royalblue', 'indianred', 'forestgreen', 'gold', 'darkviolet', 'orange', 'darkturquoise'] # a specified color for Others, this should not be included in COLORS OTHERS_COLOR = 'silver' -MAX_N_MATS = 50 # FIXME: this is a work-around to an issue of dd4hep::rec::MaterialManager::placementsBetween @@ -157,10 +156,6 @@ def material_scan(desc, start, end, epsilon, int_dets=None, thickness_corrector= dest='compact', help='Top-level xml file of the detector description.' ) - parser.add_argument( - '-o', default='.', dest='outdir', - help='Output directory.' - ) parser.add_argument( '--path-r', type=float, default=400., # 120., help='R_xy (cm) where the scan stops.' @@ -193,10 +188,6 @@ def material_scan(desc, start, end, epsilon, int_dets=None, thickness_corrector= '--value-type', default='X0', help='Choose one in {}.'.format(list(ALLOWED_VALUE_TYPES.keys())) ) - parser.add_argument( - '--groupby-materials', action='store_true', - help='Enable it to group the results by materials instead of by detectors.' - ) parser.add_argument( '--detectors', # default='all', @@ -214,8 +205,6 @@ def material_scan(desc, start, end, epsilon, int_dets=None, thickness_corrector= print('Cannot find value {}, choose one in {}'.format(args.value_type, list(ALLOWED_VALUE_TYPES.keys()))) exit(-1) - os.makedirs(args.outdir, exist_ok=True) - # scan parameters path_r = args.path_r phi = args.phi @@ -257,86 +246,12 @@ def material_scan(desc, start, end, epsilon, int_dets=None, thickness_corrector= th_corr.scan_missing_thickness(desc, start_point, np.array(start_point) + np.array([100., 50., 0.]), dz=0.0001, epsilon=args.epsilon) - # value-type - vt = ALLOWED_VALUE_TYPES[args.value_type] - - # material-based scan - if args.groupby_materials: - vals = np.zeros(shape=(len(etas), MAX_N_MATS)) - mats = [] - for i, eta in enumerate(etas): - if i % PROGRESS_STEP == 0: - print('Scanned {:d}/{:d} for {:.2f} <= eta <= {:.2f}'.format(i, len(etas), etas[0], etas[-1]), - end='\r', flush=True) - # scan material layers - end_x = path_r*np.cos(phi/180.*np.pi) - end_y = path_r*np.sin(phi/180.*np.pi) - end_z = path_r*np.sinh(eta) - # print('({:.2f}, {:.2f}, {:.2f})'.format(end_x, end_y, end_z)) - dfr = material_scan(desc, start_point, (end_x, end_y, end_z), epsilon=args.epsilon, int_dets=dets, thickness_corrector=th_corr) - - # aggregated values for detectors - x0_vals = dfr.groupby('material')[vt[0]].sum().to_dict() - # update material list - for mat in x0_vals.keys(): - if mat not in mats: - mats.append(mat) - # save material scan results - for j, mat in enumerate(mats): - vals[i, j] = x0_vals.get(mat, 0.) - print('Scanned {:d}/{:d} lines for {:.2f} < eta < {:.2f}'.format(len(etas), len(etas), etas[0], etas[-1])) - - # aggregated data for plots - dfa = pd.DataFrame(data=vals[:, :len(mats)], columns=mats, index=etas) - # sort by total thickness - smats = [d for d in dfa.sum().sort_values(ascending=False).index] - dfa.to_csv(os.path.join(args.outdir, 'material_scan_agg.csv')) - - # plot material scan - fig, ax = plt.subplots(figsize=(16, 8), dpi=160, - gridspec_kw={'top': 0.9, 'bottom': 0.2, 'left': 0.08, 'right': 0.98}) - - # group some materials into "Others" if there're no enough colors - plot_mats = smats - if len(smats) > len(COLORS): - group_mats = smats[len(COLORS):] - dfa.loc[:, OTHERS_NAME] += dfa.loc[:, group_mats].sum(axis=1) - print('Materials {} are grouped into {} due to limited number of colors.'.format(group_mats, OTHERS_NAME)) - plot_mats = sdets[:len(COLORS)] - - bottom = np.zeros(len(dfa)) - width = np.mean(np.diff(dfa.index)) - for col, c in zip(plot_mats, COLORS): - ax.fill_between(dfa.index, bottom, dfa[col].values + bottom, label=col, step='mid', color=c) - bottom += dfa[col].values - # only plot Others if there are any - if OTHERS_NAME in dfa.columns and dfa[OTHERS_NAME].sum() > 0.: - ax.fill_between(dfa.index, bottom, dfa[OTHERS_NAME].values + bottom, label=OTHERS_NAME, step='mid', color=OTHERS_COLOR) - - # formatting - ax.tick_params(which='both', direction='in', labelsize=22) - ax.set_xlabel('$\eta$', fontsize=22) - ax.set_ylabel('{} ($R_{{xy}} \leq {:.1f}$ cm)'.format(vt[1], args.path_r), fontsize=22) - ax.xaxis.set_major_locator(MultipleLocator(0.5)) - ax.xaxis.set_minor_locator(MultipleLocator(0.1)) - ax.yaxis.set_major_locator(MultipleLocator(vt[2])) - ax.yaxis.set_minor_locator(MultipleLocator(vt[3])) - ax.grid(ls=':', which='both') - ax.set_axisbelow(False) - ax.set_xlim(args.eta_min, args.eta_max) - ax.set_ylim(0., ax.get_ylim()[1]*1.1) - ax.legend(bbox_to_anchor=(0.0, 0.9, 1.0, 0.1), ncol=2, loc="upper center", fontsize=22, - borderpad=0.2, labelspacing=0.2, columnspacing=0.6, borderaxespad=0.05, handletextpad=0.4) - # ax.set_yscale('log') - fig.savefig(os.path.join(args.outdir, 'material_scan.png')) - exit(0) - - # detector-based scan # array for detailed data # number of materials cannot be pre-determined, so just assign a large number to be safe - vals = np.zeros(shape=(len(etas), len(dets) + 1, MAX_N_MATS)) + vals = np.zeros(shape=(len(etas), len(dets) + 1, 50)) dets2 = dets + [OTHERS_NAME] det_mats = {d: [] for d in dets2} + vt = ALLOWED_VALUE_TYPES[args.value_type] for i, eta in enumerate(etas): if i % PROGRESS_STEP == 0: @@ -371,10 +286,10 @@ def material_scan(desc, start, end, epsilon, int_dets=None, thickness_corrector= if sort_dets: sdets = [d for d in dfa.sum().sort_values(ascending=False).index if d != OTHERS_NAME] dfa = dfa[sdets + [OTHERS_NAME]] - dfa.to_csv(os.path.join(args.outdir, 'material_scan_agg.csv')) + dfa.to_csv('material_scan_agg.csv') # plots - pdf = matplotlib.backends.backend_pdf.PdfPages(os.path.join(args.outdir, 'material_scan_details.pdf')) + pdf = matplotlib.backends.backend_pdf.PdfPages('material_scan_details.pdf') fig, ax = plt.subplots(figsize=(16, 8), dpi=160, gridspec_kw={'top': 0.9, 'bottom': 0.2, 'left': 0.08, 'right': 0.98}) @@ -411,7 +326,7 @@ def material_scan(desc, start, end, epsilon, int_dets=None, thickness_corrector= ax.legend(bbox_to_anchor=(0.0, 0.9, 1.0, 0.1), ncol=4, loc="upper center", fontsize=22, borderpad=0.2, labelspacing=0.2, columnspacing=0.6, borderaxespad=0.05, handletextpad=0.4) # ax.set_yscale('log') - fig.savefig(os.path.join(args.outdir, 'material_scan.png')) + fig.savefig('material_scan.png') pdf.savefig(fig) plt.close(fig)