-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
FLasso: time_of_week_feature for Kölapp, Triage, Klar and Läkare kris…
- Loading branch information
1 parent
1859291
commit fb1a03c
Showing
1 changed file
with
53 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
# -*- coding: utf-8 -*- | ||
|
||
import pandas as pd | ||
import tensorflow as tf | ||
import numpy as np | ||
|
||
|
||
pdframe = pd.read_csv("FLasso2017-08-14T15:29:28.093+02:00.csv") | ||
|
||
WEEK_IN_SECONDS = 3600 * 24 * 7 | ||
BIN_WIDTH = 600 # in seconds | ||
N_BINS = WEEK_IN_SECONDS / BIN_WIDTH | ||
|
||
def _incidence_bins(event_title): | ||
incidence_bins = {i: [] for i in range(N_BINS)} | ||
epochsecond = np.array(pdframe["epochseconds"].get_values(), dtype=np.int32) | ||
next_hour_incidence = np.array(pdframe["NextHour" + event_title].get_values(), dtype=np.float32) | ||
for i in range(len(epochsecond)): | ||
second_in_week = epochsecond[i] % WEEK_IN_SECONDS | ||
bin_number = second_in_week / BIN_WIDTH | ||
incidence_bins[bin_number] = incidence_bins[bin_number] + [next_hour_incidence[i]] | ||
return incidence_bins | ||
|
||
def to_time_of_week_feature_np(epochsecond, event_title): | ||
incidence_bins = _incidence_bins(event_title) | ||
incidence_mean_bins = np.array([np.mean(incidence_bins[i]) for i in range(N_BINS)], dtype=np.float32) | ||
second_in_week = epochsecond % WEEK_IN_SECONDS | ||
return incidence_mean_bins[second_in_week / BIN_WIDTH] | ||
|
||
def to_time_of_week_feature(epochsecond, event_title): | ||
incidence_bins = _incidence_bins(event_title) | ||
incidence_mean_bins = tf.constant([np.mean(incidence_bins[i]) for i in range(N_BINS)], dtype=tf.float32) | ||
second_in_week = epochsecond % WEEK_IN_SECONDS | ||
return tf.map_fn(lambda s: incidence_mean_bins[s / BIN_WIDTH], second_in_week, dtype=tf.float32) | ||
|
||
if __name__ == "__main__": | ||
sess = tf.Session() | ||
|
||
pdframe = pd.read_csv("FLasso2017-08-14T15:29:28.093+02:00.csv") | ||
|
||
for event_title in ["Kölapp", "Triage", "Klar", "Läkare"]: | ||
print "time-of-week mse for NextHour" + event_title + ":" | ||
|
||
epochsecond = tf.constant(pdframe["epochseconds"].get_values(), dtype=tf.int32) | ||
next_hour_incidence = tf.constant(pdframe["NextHour" + event_title].get_values(), dtype=tf.float32) | ||
pred = to_time_of_week_feature(epochsecond, event_title) | ||
mse_minutes = tf.losses.mean_squared_error(next_hour_incidence, pred) | ||
print sess.run(mse_minutes) | ||
|
||
epochsecond_np = np.array(pdframe["epochseconds"].get_values(), dtype=np.int32) | ||
next_hour_incidence = np.array(pdframe["NextHour" + event_title].get_values(), dtype=np.float32) | ||
pred_np = to_time_of_week_feature_np(epochsecond_np, event_title) | ||
print np.mean((pred_np - next_hour_incidence) ** 2) |