-
Notifications
You must be signed in to change notification settings - Fork 5
/
status.qmd
246 lines (189 loc) · 7.22 KB
/
status.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
---
title: "Status"
editor: visual
---
```{r setup, echo = FALSE, message=FALSE, warning=FALSE}
# These may need to change later
knitr::opts_chunk$set(echo = FALSE, message=FALSE, warning=FALSE)
library(ggiraph)
library(patchwork)
library(tidyverse)
library(neon4cast)
library(score4cast)
library(vis4cast)
library(glue)
library(reactable)
library(httr)
library(reactablefmtr)
score4cast::ignore_sigpipe()
## source function script
source("R/status_functions.R")
```
## Data and Forecasts
```{r}
## table that covers general forecasting challenge diagnostics
#### THIS WILL BE IMPLEMENTED LATER -- CURRENTLY TOO SLOW
# themes_list <- c('aquatics','beetles','phenology','terrestrial_30min','terrestrial_daily','ticks')
#
# theme_stats <- theme_statistics(themes_list)
#
# #summed table of theme information
# df_totals <- data.frame(theme = nrow(theme_stats),
# n_teams = sum(theme_stats$n_teams),
# n_submissions = sum(theme_stats$n_submissions),
# n_obs_forecasts_pairs = sum(theme_stats$n_obs_forecasts_pairs))
#
# bound_summary_table <- rbind(theme_stats, df_totals)
#
# reactable(bound_summary_table,
# defaultColDef = colDef(
# align = "left"),
# columns = list(theme = colDef(name='Theme'),
# n_teams = colDef(name='Number of Teams'),
# n_submissions = colDef(name='Forecasts'),
# n_obs_forecasts_pairs = colDef(name='Forecast/Observation Pairs')),
# highlight = TRUE,
# bordered = TRUE) %>%
# reactablefmtr::add_title('Forecast Summary',
# align = 'center',
# font_size = '30',
# margin = margin(t=20,r=1,l=1,b=5))
```
::: panel-tabset
## Met Data
NOAA related processes:
```{r}
health_check_table('NOAA')
```
## Phenology Data
```{r}
## Create forecast submission stats
pheno_forecasts_week <- forecast_time_summary(cutoff_week,'phenology')
pheno_forecasts_month <- forecast_time_summary(cutoff_month,'phenology')
pheno_forecasts_year <- forecast_time_summary(cutoff_year,'phenology')
pheno_all <- forecast_all_summary('phenology')
```
- Forecasts submitted over the last week: `r pheno_forecasts_week`
- Forecasts submitted over the last month: `r pheno_forecasts_month`
- Forecasts submitted over the last year: `r pheno_forecasts_year`
- Total Forecasts submitted: `r pheno_all`
```{r}
## Create Targets Table
df_pheno <- readr::read_csv("https://data.ecoforecast.org/neon4cast-targets/phenology/phenology-targets.csv.gz", guess_max = 1e6) |>
na.omit()
theme_targets_table(df_pheno)
```
```{r}
## Create Forecast Table
theme_forecast_table('phenology')
```
## Aquatics Data
```{r}
## Create forecast submission stats
aquatic_forecasts_week <- forecast_time_summary(cutoff_week,'aquatics')
aquatic_forecasts_month <- forecast_time_summary(cutoff_month,'aquatics')
aquatic_forecasts_year <- forecast_time_summary(cutoff_year,'aquatics')
aquatic_all <- forecast_all_summary('aquatics')
```
- Forecasts submitted over the last week: `r aquatic_forecasts_week`
- Forecasts submitted over the last month: `r aquatic_forecasts_month`
- Forecasts submitted over the last year: `r aquatic_forecasts_year`
- Total Forecasts submitted: `r aquatic_all`
```{r}
## Create Targets Table
df_aquatics <- readr::read_csv("https://data.ecoforecast.org/neon4cast-targets/aquatics/aquatics-targets.csv.gz")
theme_targets_table(df_aquatics)
```
```{r}
## Create Forecast Table
theme_forecast_table('aquatics')
```
## Terrestrial Data (30min)
```{r}
## Post forecast submission stats --check back on this about daily or 30 min
terr_30_forecasts_week <- forecast_time_summary(cutoff_week,'terrestrial_30min')
terr_30_forecasts_month <- forecast_time_summary(cutoff_month,'terrestrial_30min')
terr_30_forecasts_year <- forecast_time_summary(cutoff_year,'terrestrial_30min')
terr_30_all <- forecast_all_summary('terrestrial_30min')
```
- Thirty minute forecasts submitted over the last week: `r terr_30_forecasts_week`
- Thirty minute forecasts submitted over the last month: `r terr_30_forecasts_month`
- Thirty minute forecasts submitted over the last year: `r terr_30_forecasts_year`
- Total Forecasts submitted: `r terr_30_all`
```{r}
## Create 30 min Targets Table
df_terr_30 <- readr::read_csv("https://data.ecoforecast.org/neon4cast-targets/terrestrial_30min/terrestrial_30min-targets.csv.gz", guess_max = 1e6)
theme_targets_table(df_terr_30)
```
```{r}
## Create 30 min Forecast Table
theme_forecast_table('terrestrial_30min')
```
## Terrestrial Data (Daily)
```{r}
terr_daily_forecasts_week <- forecast_time_summary(cutoff_week,'terrestrial_daily')
terr_daily_forecasts_month <- forecast_time_summary(cutoff_month,'terrestrial_daily')
terr_daily_forecasts_year <- forecast_time_summary(cutoff_year,'terrestrial_daily')
terr_daily_all <- forecast_all_summary('terrestrial_daily')
```
- Daily forecasts submitted over the last week: `r terr_daily_forecasts_week`
- Daily forecasts submitted over the last month: `r terr_daily_forecasts_month`
- Daily forecasts submitted over the last year: `r terr_daily_forecasts_year`
- Total Forecasts submitted: `r terr_daily_all`
```{r}
## Create Daily Targets Table
df_terr_daily <- readr::read_csv("https://data.ecoforecast.org/neon4cast-targets/terrestrial_daily/terrestrial_daily-targets.csv.gz", guess_max = 1e6) |>
na.omit()
theme_targets_table(df_terr_daily)
```
```{r}
## Create Daily Forecast Table
theme_forecast_table('terrestrial_daily')
```
## Ticks Data
```{r}
## Post forecast submission stats
ticks_forecasts_week <- forecast_time_summary(cutoff_week,'ticks')
ticks_forecasts_month <- forecast_time_summary(cutoff_month,'ticks')
ticks_forecasts_year <- forecast_time_summary(cutoff_year,'ticks')
ticks_daily_all <- forecast_all_summary('ticks')
```
- Forecasts submitted over the last week: `r ticks_forecasts_week`
- Forecasts submitted over the last month: `r ticks_forecasts_month`
- Forecasts submitted over the last year: `r ticks_forecasts_year`
- Total Forecasts submitted: `r ticks_daily_all`
```{r}
## Create Targets Table
df_ticks <- readr::read_csv("https://data.ecoforecast.org/neon4cast-targets/ticks/ticks-targets.csv.gz", guess_max = 1e6)
theme_targets_table(df_ticks)
```
```{r}
## Create Forecast Table
theme_forecast_table('ticks')
```
## Beetles Data
```{r}
## Post forecast submission stats
beetles_forecasts_week <- forecast_time_summary(cutoff_week,'beetles')
beetles_forecasts_month <- forecast_time_summary(cutoff_month,'beetles')
beetles_forecasts_year <- forecast_time_summary(cutoff_year,'beetles')
beetles_daily_all <- forecast_all_summary('beetles')
```
- Forecasts submitted over the last week: `r beetles_forecasts_week`
- Forecasts submitted over the last month: `r beetles_forecasts_month`
- Forecasts submitted over the last year: `r beetles_forecasts_year`
- Total Forecasts submitted: `r beetles_daily_all`
```{r}
## Create Targets Table
df_beetles <- readr::read_csv("https://data.ecoforecast.org/neon4cast-targets/beetles/beetles-targets.csv.gz", guess_max = 1e6)
theme_targets_table(df_beetles)
```
```{r}
## Create Forecast Table
theme_forecast_table('beetles')
```
## Automated Jobs
```{r}
health_check_table('ALL')
```
:::