diff --git a/catalog/noaa_forecasts/collection.json b/catalog/noaa_forecasts/collection.json index dc10c8e1cd..91ea228d16 100644 --- a/catalog/noaa_forecasts/collection.json +++ b/catalog/noaa_forecasts/collection.json @@ -166,12 +166,12 @@ "description": "Use `arrow` for remote access to the database. This R code will return results for the VERA Forecasting Challenge.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@drivers/noaa/gefs-v12-reprocess/?endpoint_override=s3.flare-forecast.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, "thumbnail": { - "href": "https://raw.githubusercontent.com/eco4cast/neon4cast-ci/main/catalog/thumbnail_plots/51629805865_0ef01ffbbc_c.jpg", + "href": "https://raw.githubusercontent.com/eco4cast/neon4cast-ci/main/catalog/thumbnail_plots/neon_wetland.jpg", "type": "image/JPEG", "roles": [ "thumbnail" ], - "title": "NEON Buoy Image" + "title": "NEON Image" } } } diff --git a/catalog/scores/Aquatics/Daily_Chlorophyll_a/collection.json b/catalog/scores/Aquatics/Daily_Chlorophyll_a/collection.json index 8b1a45ac58..11f5f85fef 100644 --- a/catalog/scores/Aquatics/Daily_Chlorophyll_a/collection.json +++ b/catalog/scores/Aquatics/Daily_Chlorophyll_a/collection.json @@ -108,22 +108,22 @@ { "rel": "item", "type": "application/json", - "href": "../../models/model_items/procEppleyNorbergMonod.json" + "href": "../../models/model_items/procCTMIMonod.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/tg_lasso.json" + "href": "../../models/model_items/tg_randfor.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/tg_randfor.json" + "href": "../../models/model_items/procEppleyNorbergMonod.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/procCTMIMonod.json" + "href": "../../models/model_items/tg_lasso.json" }, { "rel": "item", diff --git a/catalog/scores/Aquatics/Daily_Dissolved_oxygen/collection.json b/catalog/scores/Aquatics/Daily_Dissolved_oxygen/collection.json index 67c31aaf04..a5d5779b16 100644 --- a/catalog/scores/Aquatics/Daily_Dissolved_oxygen/collection.json +++ b/catalog/scores/Aquatics/Daily_Dissolved_oxygen/collection.json @@ -38,42 +38,37 @@ { "rel": "item", "type": "application/json", - "href": "../../models/model_items/tg_lasso_all_sites.json" - }, - { - "rel": "item", - "type": "application/json", - "href": "../../models/model_items/tg_precip_lm_all_sites.json" + "href": "../../models/model_items/cb_f1.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/tg_randfor_all_sites.json" + "href": "../../models/model_items/climatology.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/tg_tbats.json" + "href": "../../models/model_items/persistenceRW.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/cb_f1.json" + "href": "../../models/model_items/tg_lasso_all_sites.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/climatology.json" + "href": "../../models/model_items/tg_randfor.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/persistenceRW.json" + "href": "../../models/model_items/tg_randfor_all_sites.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/tg_randfor.json" + "href": "../../models/model_items/tg_tbats.json" }, { "rel": "item", @@ -88,7 +83,7 @@ { "rel": "item", "type": "application/json", - "href": "../../models/model_items/tg_humidity_lm.json" + "href": "../../models/model_items/tg_precip_lm_all_sites.json" }, { "rel": "item", @@ -100,6 +95,11 @@ "type": "application/json", "href": "../../models/model_items/null.json" }, + { + "rel": "item", + "type": "application/json", + "href": "../../models/model_items/tg_humidity_lm.json" + }, { "rel": "item", "type": "application/json", diff --git a/catalog/scores/Aquatics/Daily_Water_temperature/collection.json b/catalog/scores/Aquatics/Daily_Water_temperature/collection.json index 29af9b3b6e..abb8b036fd 100644 --- a/catalog/scores/Aquatics/Daily_Water_temperature/collection.json +++ b/catalog/scores/Aquatics/Daily_Water_temperature/collection.json @@ -68,102 +68,102 @@ { "rel": "item", "type": "application/json", - "href": "../../models/model_items/cb_f1.json" + "href": "../../models/model_items/air2waterSat_2.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/climatology.json" + "href": "../../models/model_items/fARIMA.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/flare_ler.json" + "href": "../../models/model_items/fTSLM_lag.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/tg_bag_mlp.json" + "href": "../../models/model_items/flareGOTM.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/tg_humidity_lm.json" + "href": "../../models/model_items/flare_ler.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/tg_precip_lm.json" + "href": "../../models/model_items/tg_lasso_all_sites.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/tg_randfor_all_sites.json" + "href": "../../models/model_items/tg_randfor.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/tg_temp_lm.json" + "href": "../../models/model_items/tg_bag_mlp.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/tg_temp_lm_all_sites.json" + "href": "../../models/model_items/tg_humidity_lm.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/tg_randfor.json" + "href": "../../models/model_items/tg_lasso.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/air2waterSat_2.json" + "href": "../../models/model_items/tg_precip_lm.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/cb_prophet.json" + "href": "../../models/model_items/tg_precip_lm_all_sites.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/fARIMA.json" + "href": "../../models/model_items/tg_temp_lm.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/flareSimstrat_noDA.json" + "href": "../../models/model_items/cb_prophet.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/fTSLM_lag.json" + "href": "../../models/model_items/flareSimstrat_noDA.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/flareGOTM.json" + "href": "../../models/model_items/flare_ler_baselines.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/tg_lasso_all_sites.json" + "href": "../../models/model_items/cb_f1.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/flare_ler_baselines.json" + "href": "../../models/model_items/climatology.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/tg_lasso.json" + "href": "../../models/model_items/tg_randfor_all_sites.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/tg_precip_lm_all_sites.json" + "href": "../../models/model_items/tg_temp_lm_all_sites.json" }, { "rel": "item", @@ -178,12 +178,12 @@ { "rel": "item", "type": "application/json", - "href": "../../models/model_items/GLEON_physics.json" + "href": "../../models/model_items/tg_humidity_lm_all_sites.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/tg_humidity_lm_all_sites.json" + "href": "../../models/model_items/GLEON_physics.json" }, { "rel": "item", diff --git a/catalog/scores/Phenology/Daily_Red_chromatic_coordinate/collection.json b/catalog/scores/Phenology/Daily_Red_chromatic_coordinate/collection.json index 29b73d773f..8f867a93dd 100644 --- a/catalog/scores/Phenology/Daily_Red_chromatic_coordinate/collection.json +++ b/catalog/scores/Phenology/Daily_Red_chromatic_coordinate/collection.json @@ -10,6 +10,11 @@ ], "type": "Collection", "links": [ + { + "rel": "item", + "type": "application/json", + "href": "../../models/model_items/baseline_ensemble.json" + }, { "rel": "item", "type": "application/json", @@ -53,37 +58,32 @@ { "rel": "item", "type": "application/json", - "href": "../../models/model_items/baseline_ensemble.json" - }, - { - "rel": "item", - "type": "application/json", - "href": "../../models/model_items/tg_bag_mlp.json" + "href": "../../models/model_items/tg_humidity_lm.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/tg_randfor.json" + "href": "../../models/model_items/tg_lasso.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/tg_humidity_lm.json" + "href": "../../models/model_items/tg_precip_lm.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/tg_lasso.json" + "href": "../../models/model_items/tg_temp_lm.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/tg_precip_lm.json" + "href": "../../models/model_items/tg_bag_mlp.json" }, { "rel": "item", "type": "application/json", - "href": "../../models/model_items/tg_temp_lm.json" + "href": "../../models/model_items/tg_randfor.json" }, { "rel": "item", diff --git a/catalog/scores/Terrestrial/Daily_Net_ecosystem_exchange/collection.json b/catalog/scores/Terrestrial/Daily_Net_ecosystem_exchange/collection.json index d25280a4ac..71ce03cdc2 100644 --- a/catalog/scores/Terrestrial/Daily_Net_ecosystem_exchange/collection.json +++ b/catalog/scores/Terrestrial/Daily_Net_ecosystem_exchange/collection.json @@ -50,11 +50,6 @@ "type": "application/json", "href": "../../models/model_items/tg_precip_lm_all_sites.json" }, - { - "rel": "item", - "type": "application/json", - "href": "../../models/model_items/tg_precip_lm.json" - }, { "rel": "item", "type": "application/json", @@ -75,6 +70,11 @@ "type": "application/json", "href": "../../models/model_items/randfor.json" }, + { + "rel": "item", + "type": "application/json", + "href": "../../models/model_items/tg_precip_lm.json" + }, { "rel": "item", "type": "application/json", diff --git a/catalog/scores/models/collection.json b/catalog/scores/models/collection.json index 67900131a6..fd1ac0840a 100644 --- a/catalog/scores/models/collection.json +++ b/catalog/scores/models/collection.json @@ -13,32 +13,32 @@ { "rel": "item", "type": "application/json", - "href": "model_items/tg_ets.json" + "href": "model_items/lasso.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/tg_humidity_lm.json" + "href": "model_items/tg_arima.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/tg_humidity_lm_all_sites.json" + "href": "model_items/tg_auto_adam.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/tg_precip_lm_all_sites.json" + "href": "model_items/tg_ets.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/tg_tbats.json" + "href": "model_items/tg_randfor.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/air2waterSat_2.json" + "href": "model_items/tg_tbats.json" }, { "rel": "item", @@ -48,7 +48,7 @@ { "rel": "item", "type": "application/json", - "href": "model_items/tg_arima.json" + "href": "model_items/persistenceRW.json" }, { "rel": "item", @@ -58,77 +58,77 @@ { "rel": "item", "type": "application/json", - "href": "model_items/tg_lasso_all_sites.json" + "href": "model_items/tg_humidity_lm.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/tg_randfor_all_sites.json" + "href": "model_items/tg_humidity_lm_all_sites.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/persistenceRW.json" + "href": "model_items/tg_precip_lm_all_sites.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/tg_temp_lm_all_sites.json" + "href": "model_items/air2waterSat_2.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/lasso.json" + "href": "model_items/USGSHABs1.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/tg_auto_adam.json" + "href": "model_items/climatology.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/tg_randfor.json" + "href": "model_items/tg_lasso.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/cb_f1.json" + "href": "model_items/tg_precip_lm.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/climatology.json" + "href": "model_items/cb_f1.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/USGSHABs1.json" + "href": "model_items/tg_lasso_all_sites.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/tg_lasso.json" + "href": "model_items/tg_randfor_all_sites.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/tg_precip_lm.json" + "href": "model_items/tg_temp_lm.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/tg_temp_lm.json" + "href": "model_items/tg_temp_lm_all_sites.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/randfor.json" + "href": "model_items/baseline_ensemble.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/baseline_ensemble.json" + "href": "model_items/randfor.json" }, { "rel": "item", @@ -153,72 +153,72 @@ { "rel": "item", "type": "application/json", - "href": "model_items/flareGLM.json" + "href": "model_items/GLEON_lm_lag_1day.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/flareSimstrat.json" + "href": "model_items/null.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/mean.json" + "href": "model_items/flareGLM.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/procEppleyNorbergSteele.json" + "href": "model_items/flareSimstrat.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/GLEON_lm_lag_1day.json" + "href": "model_items/mean.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/null.json" + "href": "model_items/procEppleyNorbergSteele.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/flare_ler.json" + "href": "model_items/fARIMA.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/fARIMA.json" + "href": "model_items/fTSLM_lag.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/flareSimstrat_noDA.json" + "href": "model_items/flareGOTM.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/fTSLM_lag.json" + "href": "model_items/flare_ler.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/flareGOTM.json" + "href": "model_items/procBlanchardMonod.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/prophet_clim_ensemble.json" + "href": "model_items/flareSimstrat_noDA.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/flare_ler_baselines.json" + "href": "model_items/prophet_clim_ensemble.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/procBlanchardMonod.json" + "href": "model_items/flare_ler_baselines.json" }, { "rel": "item", @@ -243,12 +243,12 @@ { "rel": "item", "type": "application/json", - "href": "model_items/procEppleyNorbergMonod.json" + "href": "model_items/procCTMIMonod.json" }, { "rel": "item", "type": "application/json", - "href": "model_items/procCTMIMonod.json" + "href": "model_items/procEppleyNorbergMonod.json" }, { "rel": "item", diff --git a/catalog/scores/models/model_items/baseline_ensemble.json b/catalog/scores/models/model_items/baseline_ensemble.json index ef9e5b2c50..90a4066098 100644 --- a/catalog/scores/models/model_items/baseline_ensemble.json +++ b/catalog/scores/models/model_items/baseline_ensemble.json @@ -22,6 +22,16 @@ [-119.006, 37.0058], [-89.5857, 45.4937], [-95.1921, 39.0404], + [-96.443, 38.9459], + [-122.1655, 44.2596], + [-78.1473, 38.8943], + [-97.7823, 33.3785], + [-111.7979, 40.7839], + [-102.4471, 39.7582], + [-82.0084, 29.676], + [-119.2575, 37.0597], + [-110.5871, 44.9501], + [-96.6242, 34.4442], [-99.1066, 47.1617], [-87.8039, 32.5417], [-81.4362, 28.1251], @@ -41,33 +51,17 @@ [-119.7323, 37.1088], [-119.2622, 37.0334], [-110.8355, 31.9107], - [-96.443, 38.9459], - [-122.1655, 44.2596], - [-78.1473, 38.8943], - [-97.7823, 33.3785], - [-111.7979, 40.7839], - [-102.4471, 39.7582], - [-82.0084, 29.676], - [-119.2575, 37.0597], - [-110.5871, 44.9501], - [-96.6242, 34.4442], - [-87.7982, 32.5415], - [-105.5442, 40.035], - [-66.9868, 18.1135], - [-84.4374, 31.1854], - [-66.7987, 18.1741], [-72.3295, 42.4719], [-96.6038, 39.1051], [-83.5038, 35.6904], [-77.9832, 39.0956], [-121.9338, 45.7908], [-87.4077, 32.9604], - [-82.0177, 29.6878], - [-111.5081, 33.751], - [-119.0274, 36.9559], - [-88.1589, 31.8534], - [-84.2793, 35.9574], - [-105.9154, 39.8914], + [-87.7982, 32.5415], + [-105.5442, 40.035], + [-66.9868, 18.1135], + [-84.4374, 31.1854], + [-66.7987, 18.1741], [-122.3303, 45.7624], [-71.2874, 44.0639], [-78.0418, 39.0337], @@ -79,6 +73,12 @@ [-96.5631, 39.1008], [-67.0769, 18.0213], [-72.1727, 42.5369], + [-82.0177, 29.6878], + [-111.5081, 33.751], + [-119.0274, 36.9559], + [-88.1589, 31.8534], + [-84.2793, 35.9574], + [-105.9154, 39.8914], [-99.0588, 35.4106], [-112.4524, 40.1776], [-84.2826, 35.9641], @@ -88,7 +88,7 @@ ] }, "properties": { - "description": "\nmodel info: NA\n\nSites: STEI, STER, TALL, TEAK, TREE, UKFS, DCFS, DELA, DSNY, GRSM, GUAN, UNDE, WOOD, WREF, YELL, LENO, MLBS, MOAB, NIWO, NOGP, SCBI, SERC, SJER, SOAP, SRER, MCDI, MCRA, POSE, PRIN, REDB, ARIK, BARC, BIGC, BLDE, BLUE, BLWA, COMO, CUPE, FLNT, GUIL, HOPB, KING, LECO, LEWI, MART, MAYF, SUGG, SYCA, TECR, TOMB, WALK, WLOU, ABBY, BART, BLAN, CLBJ, CPER, JERC, JORN, KONA, KONZ, LAJA, HARV, OAES, ONAQ, ORNL, OSBS, PUUM, RMNP\n\nVariables: Daily Red_chromatic_coordinate, Daily Water_temperature", + "description": "\nmodel info: NA\n\nSites: STEI, STER, TALL, TEAK, TREE, UKFS, MCDI, MCRA, POSE, PRIN, REDB, ARIK, BARC, BIGC, BLDE, BLUE, DCFS, DELA, DSNY, GRSM, GUAN, UNDE, WOOD, WREF, YELL, LENO, MLBS, MOAB, NIWO, NOGP, SCBI, SERC, SJER, SOAP, SRER, HOPB, KING, LECO, LEWI, MART, MAYF, BLWA, COMO, CUPE, FLNT, GUIL, ABBY, BART, BLAN, CLBJ, CPER, JERC, JORN, KONA, KONZ, LAJA, HARV, SUGG, SYCA, TECR, TOMB, WALK, WLOU, OAES, ONAQ, ORNL, OSBS, PUUM, RMNP\n\nVariables: Daily Red_chromatic_coordinate, Daily Water_temperature", "start_datetime": "2023-11-14", "end_datetime": "2024-01-04", "providers": [ diff --git a/catalog/scores/models/model_items/cb_prophet.json b/catalog/scores/models/model_items/cb_prophet.json index 751766e0a3..225bd11bd0 100644 --- a/catalog/scores/models/model_items/cb_prophet.json +++ b/catalog/scores/models/model_items/cb_prophet.json @@ -16,33 +16,6 @@ "geometry": { "type": "MultiPoint", "coordinates": [ - [-87.7982, 32.5415], - [-147.504, 65.1532], - [-105.5442, 40.035], - [-89.4737, 46.2097], - [-66.9868, 18.1135], - [-84.4374, 31.1854], - [-66.7987, 18.1741], - [-72.3295, 42.4719], - [-96.6038, 39.1051], - [-83.5038, 35.6904], - [-77.9832, 39.0956], - [-89.7048, 45.9983], - [-121.9338, 45.7908], - [-87.4077, 32.9604], - [-96.443, 38.9459], - [-122.1655, 44.2596], - [-78.1473, 38.8943], - [-97.7823, 33.3785], - [-99.1139, 47.1591], - [-99.2531, 47.1298], - [-111.7979, 40.7839], - [-82.0177, 29.6878], - [-111.5081, 33.751], - [-119.0274, 36.9559], - [-88.1589, 31.8534], - [-84.2793, 35.9574], - [-105.9154, 39.8914], [-71.2874, 44.0639], [-104.7456, 40.8155], [-72.1727, 42.5369], @@ -86,6 +59,33 @@ [-78.1395, 38.8929], [-109.3883, 38.2483], [-155.3173, 19.5531], + [-87.7982, 32.5415], + [-147.504, 65.1532], + [-105.5442, 40.035], + [-89.4737, 46.2097], + [-66.9868, 18.1135], + [-84.4374, 31.1854], + [-66.7987, 18.1741], + [-72.3295, 42.4719], + [-96.6038, 39.1051], + [-83.5038, 35.6904], + [-77.9832, 39.0956], + [-89.7048, 45.9983], + [-121.9338, 45.7908], + [-87.4077, 32.9604], + [-96.443, 38.9459], + [-122.1655, 44.2596], + [-78.1473, 38.8943], + [-97.7823, 33.3785], + [-99.1139, 47.1591], + [-99.2531, 47.1298], + [-111.7979, 40.7839], + [-82.0177, 29.6878], + [-111.5081, 33.751], + [-119.0274, 36.9559], + [-88.1589, 31.8534], + [-84.2793, 35.9574], + [-105.9154, 39.8914], [-110.5391, 44.9535], [-147.5026, 65.154], [-66.8687, 17.9696], @@ -98,7 +98,7 @@ ] }, "properties": { - "description": "\nmodel info: NA\n\nSites: BLWA, CARI, COMO, CRAM, CUPE, FLNT, GUIL, HOPB, KING, LECO, LEWI, LIRO, MART, MAYF, MCDI, MCRA, POSE, PRIN, PRLA, PRPO, REDB, SUGG, SYCA, TECR, TOMB, WALK, WLOU, BART, CPER, HARV, UNDE, STER, KONA, TREE, ABBY, LENO, UKFS, DEJU, KONZ, RMNP, BARR, JORN, SOAP, STEI, TALL, DCFS, TOOL, WOOD, OAES, HEAL, SERC, BLAN, GRSM, ORNL, SRER, NOGP, JERC, DELA, MLBS, NIWO, WREF, LAJA, TEAK, CLBJ, SJER, ONAQ, DSNY, SCBI, MOAB, PUUM, YELL, BONA, GUAN, OSBS, ARIK, BARC, BIGC, BLDE, BLUE\n\nVariables: Daily Dissolved_oxygen, Daily Net_ecosystem_exchange, Daily Green_chromatic_coordinate, Daily latent_heat_flux, Daily Red_chromatic_coordinate, Daily Water_temperature, Daily Chlorophyll_a", + "description": "\nmodel info: NA\n\nSites: BART, CPER, HARV, UNDE, STER, KONA, TREE, ABBY, LENO, UKFS, DEJU, KONZ, RMNP, BARR, JORN, SOAP, STEI, TALL, DCFS, TOOL, WOOD, OAES, HEAL, SERC, BLAN, GRSM, ORNL, SRER, NOGP, JERC, DELA, MLBS, NIWO, WREF, LAJA, TEAK, CLBJ, SJER, ONAQ, DSNY, SCBI, MOAB, PUUM, BLWA, CARI, COMO, CRAM, CUPE, FLNT, GUIL, HOPB, KING, LECO, LEWI, LIRO, MART, MAYF, MCDI, MCRA, POSE, PRIN, PRLA, PRPO, REDB, SUGG, SYCA, TECR, TOMB, WALK, WLOU, YELL, BONA, GUAN, OSBS, ARIK, BARC, BIGC, BLDE, BLUE\n\nVariables: Daily Net_ecosystem_exchange, Daily Dissolved_oxygen, Daily Green_chromatic_coordinate, Daily latent_heat_flux, Daily Red_chromatic_coordinate, Daily Water_temperature, Daily Chlorophyll_a", "start_datetime": "2023-11-14", "end_datetime": "2024-01-08", "providers": [ @@ -123,8 +123,8 @@ "keywords": [ "Forecasting", "neon4cast", - "Daily Dissolved_oxygen", "Daily Net_ecosystem_exchange", + "Daily Dissolved_oxygen", "Daily Green_chromatic_coordinate", "Daily latent_heat_flux", "Daily Red_chromatic_coordinate", @@ -281,17 +281,17 @@ "description": "The link to the model code provided by the model submission team" }, "3": { - "type": "application/x-parquet", - "title": "Database Access for Daily Dissolved_oxygen", - "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=cb_prophet?endpoint_override=sdsc.osn.xsede.org", - "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=cb_prophet?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" - }, - "4": { "type": "application/x-parquet", "title": "Database Access for Daily Net_ecosystem_exchange", "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=nee/model_id=cb_prophet?endpoint_override=sdsc.osn.xsede.org", "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=nee/model_id=cb_prophet?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, + "4": { + "type": "application/x-parquet", + "title": "Database Access for Daily Dissolved_oxygen", + "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=cb_prophet?endpoint_override=sdsc.osn.xsede.org", + "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=cb_prophet?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + }, "5": { "type": "application/x-parquet", "title": "Database Access for Daily Green_chromatic_coordinate", diff --git a/catalog/scores/models/model_items/climatology.json b/catalog/scores/models/model_items/climatology.json index dd75954ad3..9735c025e7 100644 --- a/catalog/scores/models/model_items/climatology.json +++ b/catalog/scores/models/model_items/climatology.json @@ -16,33 +16,6 @@ "geometry": { "type": "MultiPoint", "coordinates": [ - [-102.4471, 39.7582], - [-82.0084, 29.676], - [-119.2575, 37.0597], - [-110.5871, 44.9501], - [-96.6242, 34.4442], - [-87.7982, 32.5415], - [-105.5442, 40.035], - [-66.9868, 18.1135], - [-84.4374, 31.1854], - [-66.7987, 18.1741], - [-72.3295, 42.4719], - [-96.6038, 39.1051], - [-83.5038, 35.6904], - [-77.9832, 39.0956], - [-121.9338, 45.7908], - [-87.4077, 32.9604], - [-96.443, 38.9459], - [-122.1655, 44.2596], - [-78.1473, 38.8943], - [-97.7823, 33.3785], - [-111.7979, 40.7839], - [-82.0177, 29.6878], - [-111.5081, 33.751], - [-119.0274, 36.9559], - [-88.1589, 31.8534], - [-84.2793, 35.9574], - [-105.9154, 39.8914], [-122.3303, 45.7624], [-71.2874, 44.0639], [-78.0418, 39.0337], @@ -85,6 +58,33 @@ [-99.2413, 47.1282], [-121.9519, 45.8205], [-110.5391, 44.9535], + [-102.4471, 39.7582], + [-82.0084, 29.676], + [-119.2575, 37.0597], + [-110.5871, 44.9501], + [-96.6242, 34.4442], + [-87.7982, 32.5415], + [-105.5442, 40.035], + [-66.9868, 18.1135], + [-84.4374, 31.1854], + [-66.7987, 18.1741], + [-72.3295, 42.4719], + [-96.6038, 39.1051], + [-83.5038, 35.6904], + [-77.9832, 39.0956], + [-121.9338, 45.7908], + [-87.4077, 32.9604], + [-96.443, 38.9459], + [-122.1655, 44.2596], + [-78.1473, 38.8943], + [-97.7823, 33.3785], + [-111.7979, 40.7839], + [-82.0177, 29.6878], + [-111.5081, 33.751], + [-119.0274, 36.9559], + [-88.1589, 31.8534], + [-84.2793, 35.9574], + [-105.9154, 39.8914], [-145.7514, 63.8811], [-149.2133, 63.8758], [-149.3705, 68.6611], @@ -94,7 +94,7 @@ ] }, "properties": { - "description": ["\nmodel info: Historical DOY mean and sd. Assumes normal distribution\n\n\nSites: ARIK, BARC, BIGC, BLDE, BLUE, BLWA, COMO, CUPE, FLNT, GUIL, HOPB, KING, LECO, LEWI, MART, MAYF, MCDI, MCRA, POSE, PRIN, REDB, SUGG, SYCA, TECR, TOMB, WALK, WLOU, ABBY, BART, BLAN, CLBJ, CPER, DCFS, DELA, DSNY, GRSM, GUAN, HARV, JERC, JORN, KONA, KONZ, LAJA, LENO, MLBS, MOAB, NIWO, NOGP, OAES, ONAQ, ORNL, OSBS, PUUM, RMNP, SCBI, SERC, SJER, SOAP, SRER, STEI, STER, TALL, TEAK, TREE, UKFS, UNDE, WOOD, WREF, YELL, DEJU, HEAL, TOOL, BARR, BONA, CARI\n\nVariables: Daily Dissolved_oxygen, Daily Green_chromatic_coordinate, 30min latent_heat_flux, Daily latent_heat_flux, 30min Net_ecosystem_exchange, Daily Net_ecosystem_exchange, Daily Chlorophyll_a, Daily Water_temperature, Daily Red_chromatic_coordinate", "\nmodel info: NA\n\nSites: ARIK, BARC, BIGC, BLDE, BLUE, BLWA, COMO, CUPE, FLNT, GUIL, HOPB, KING, LECO, LEWI, MART, MAYF, MCDI, MCRA, POSE, PRIN, REDB, SUGG, SYCA, TECR, TOMB, WALK, WLOU, ABBY, BART, BLAN, CLBJ, CPER, DCFS, DELA, DSNY, GRSM, GUAN, HARV, JERC, JORN, KONA, KONZ, LAJA, LENO, MLBS, MOAB, NIWO, NOGP, OAES, ONAQ, ORNL, OSBS, PUUM, RMNP, SCBI, SERC, SJER, SOAP, SRER, STEI, STER, TALL, TEAK, TREE, UKFS, UNDE, WOOD, WREF, YELL, DEJU, HEAL, TOOL, BARR, BONA, CARI\n\nVariables: Daily Dissolved_oxygen, Daily Green_chromatic_coordinate, 30min latent_heat_flux, Daily latent_heat_flux, 30min Net_ecosystem_exchange, Daily Net_ecosystem_exchange, Daily Chlorophyll_a, Daily Water_temperature, Daily Red_chromatic_coordinate"], + "description": ["\nmodel info: Historical DOY mean and sd. Assumes normal distribution\n\n\nSites: ABBY, BART, BLAN, CLBJ, CPER, DCFS, DELA, DSNY, GRSM, GUAN, HARV, JERC, JORN, KONA, KONZ, LAJA, LENO, MLBS, MOAB, NIWO, NOGP, OAES, ONAQ, ORNL, OSBS, PUUM, RMNP, SCBI, SERC, SJER, SOAP, SRER, STEI, STER, TALL, TEAK, TREE, UKFS, UNDE, WOOD, WREF, YELL, ARIK, BARC, BIGC, BLDE, BLUE, BLWA, COMO, CUPE, FLNT, GUIL, HOPB, KING, LECO, LEWI, MART, MAYF, MCDI, MCRA, POSE, PRIN, REDB, SUGG, SYCA, TECR, TOMB, WALK, WLOU, DEJU, HEAL, TOOL, BARR, BONA, CARI\n\nVariables: Daily Green_chromatic_coordinate, Daily Dissolved_oxygen, 30min latent_heat_flux, Daily latent_heat_flux, 30min Net_ecosystem_exchange, Daily Net_ecosystem_exchange, Daily Chlorophyll_a, Daily Red_chromatic_coordinate, Daily Water_temperature", "\nmodel info: NA\n\nSites: ABBY, BART, BLAN, CLBJ, CPER, DCFS, DELA, DSNY, GRSM, GUAN, HARV, JERC, JORN, KONA, KONZ, LAJA, LENO, MLBS, MOAB, NIWO, NOGP, OAES, ONAQ, ORNL, OSBS, PUUM, RMNP, SCBI, SERC, SJER, SOAP, SRER, STEI, STER, TALL, TEAK, TREE, UKFS, UNDE, WOOD, WREF, YELL, ARIK, BARC, BIGC, BLDE, BLUE, BLWA, COMO, CUPE, FLNT, GUIL, HOPB, KING, LECO, LEWI, MART, MAYF, MCDI, MCRA, POSE, PRIN, REDB, SUGG, SYCA, TECR, TOMB, WALK, WLOU, DEJU, HEAL, TOOL, BARR, BONA, CARI\n\nVariables: Daily Green_chromatic_coordinate, Daily Dissolved_oxygen, 30min latent_heat_flux, Daily latent_heat_flux, 30min Net_ecosystem_exchange, Daily Net_ecosystem_exchange, Daily Chlorophyll_a, Daily Red_chromatic_coordinate, Daily Water_temperature"], "start_datetime": "2023-11-14", "end_datetime": "2024-01-11", "providers": [ @@ -119,15 +119,15 @@ "keywords": [ "Forecasting", "neon4cast", - "Daily Dissolved_oxygen", "Daily Green_chromatic_coordinate", + "Daily Dissolved_oxygen", "30min latent_heat_flux", "Daily latent_heat_flux", "30min Net_ecosystem_exchange", "Daily Net_ecosystem_exchange", "Daily Chlorophyll_a", - "Daily Water_temperature", - "Daily Red_chromatic_coordinate" + "Daily Red_chromatic_coordinate", + "Daily Water_temperature" ], "table:columns": [ { @@ -279,17 +279,17 @@ "description": "The link to the model code provided by the model submission team" }, "3": { - "type": "application/x-parquet", - "title": "Database Access for Daily Dissolved_oxygen", - "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=climatology?endpoint_override=sdsc.osn.xsede.org", - "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=climatology?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" - }, - "4": { "type": "application/x-parquet", "title": "Database Access for Daily Green_chromatic_coordinate", "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=gcc_90/model_id=climatology?endpoint_override=sdsc.osn.xsede.org", "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=gcc_90/model_id=climatology?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, + "4": { + "type": "application/x-parquet", + "title": "Database Access for Daily Dissolved_oxygen", + "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=climatology?endpoint_override=sdsc.osn.xsede.org", + "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=climatology?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + }, "5": { "type": "application/x-parquet", "title": "Database Access for 30min latent_heat_flux", @@ -321,16 +321,16 @@ "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=chla/model_id=climatology?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, "10": { - "type": "application/x-parquet", - "title": "Database Access for Daily Water_temperature", - "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=temperature/model_id=climatology?endpoint_override=sdsc.osn.xsede.org", - "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=temperature/model_id=climatology?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" - }, - "11": { "type": "application/x-parquet", "title": "Database Access for Daily Red_chromatic_coordinate", "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=climatology?endpoint_override=sdsc.osn.xsede.org", "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=climatology?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + }, + "11": { + "type": "application/x-parquet", + "title": "Database Access for Daily Water_temperature", + "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=temperature/model_id=climatology?endpoint_override=sdsc.osn.xsede.org", + "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=temperature/model_id=climatology?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" } } } diff --git a/catalog/scores/models/model_items/fARIMA.json b/catalog/scores/models/model_items/fARIMA.json index d37d4bc847..4251cf9b74 100644 --- a/catalog/scores/models/model_items/fARIMA.json +++ b/catalog/scores/models/model_items/fARIMA.json @@ -16,15 +16,6 @@ "geometry": { "type": "MultiPoint", "coordinates": [ - [-88.1589, 31.8534], - [-149.6106, 68.6307], - [-84.2793, 35.9574], - [-105.9154, 39.8914], - [-102.4471, 39.7582], - [-82.0084, 29.676], - [-119.2575, 37.0597], - [-110.5871, 44.9501], - [-96.6242, 34.4442], [-87.7982, 32.5415], [-147.504, 65.1532], [-105.5442, 40.035], @@ -49,11 +40,20 @@ [-111.7979, 40.7839], [-82.0177, 29.6878], [-111.5081, 33.751], - [-119.0274, 36.9559] + [-119.0274, 36.9559], + [-88.1589, 31.8534], + [-149.6106, 68.6307], + [-84.2793, 35.9574], + [-105.9154, 39.8914], + [-102.4471, 39.7582], + [-82.0084, 29.676], + [-119.2575, 37.0597], + [-110.5871, 44.9501], + [-96.6242, 34.4442] ] }, "properties": { - "description": "\nmodel info: NA\n\nSites: TOMB, TOOK, WALK, WLOU, ARIK, BARC, BIGC, BLDE, BLUE, BLWA, CARI, COMO, CRAM, CUPE, FLNT, GUIL, HOPB, KING, LECO, LEWI, LIRO, MART, MAYF, MCDI, MCRA, OKSR, POSE, PRIN, PRLA, PRPO, REDB, SUGG, SYCA, TECR\n\nVariables: Daily Water_temperature", + "description": "\nmodel info: NA\n\nSites: BLWA, CARI, COMO, CRAM, CUPE, FLNT, GUIL, HOPB, KING, LECO, LEWI, LIRO, MART, MAYF, MCDI, MCRA, OKSR, POSE, PRIN, PRLA, PRPO, REDB, SUGG, SYCA, TECR, TOMB, TOOK, WALK, WLOU, ARIK, BARC, BIGC, BLDE, BLUE\n\nVariables: Daily Water_temperature", "start_datetime": "2023-11-10", "end_datetime": "2024-01-08", "providers": [ diff --git a/catalog/scores/models/model_items/fARIMA_clim_ensemble.json b/catalog/scores/models/model_items/fARIMA_clim_ensemble.json index 5762dae0d3..e475e94806 100644 --- a/catalog/scores/models/model_items/fARIMA_clim_ensemble.json +++ b/catalog/scores/models/model_items/fARIMA_clim_ensemble.json @@ -22,16 +22,16 @@ [-87.4077, 32.9604], [-96.443, 38.9459], [-122.1655, 44.2596], + [-96.6038, 39.1051], + [-78.1473, 38.8943], + [-111.7979, 40.7839], [-105.5442, 40.035], [-89.4737, 46.2097], [-66.9868, 18.1135], [-84.4374, 31.1854], [-66.7987, 18.1741], [-72.3295, 42.4719], - [-96.6038, 39.1051], - [-78.1473, 38.8943], [-97.7823, 33.3785], - [-111.7979, 40.7839], [-82.0177, 29.6878], [-111.5081, 33.751], [-102.4471, 39.7582], @@ -45,7 +45,7 @@ ] }, "properties": { - "description": "\nmodel info: NA\n\nSites: LECO, LEWI, MART, MAYF, MCDI, MCRA, COMO, CRAM, CUPE, FLNT, GUIL, HOPB, KING, POSE, PRIN, REDB, SUGG, SYCA, ARIK, BARC, BLDE, BLUE, BLWA, WALK, WLOU, TOMB\n\nVariables: Daily Water_temperature", + "description": "\nmodel info: NA\n\nSites: LECO, LEWI, MART, MAYF, MCDI, MCRA, KING, POSE, REDB, COMO, CRAM, CUPE, FLNT, GUIL, HOPB, PRIN, SUGG, SYCA, ARIK, BARC, BLDE, BLUE, BLWA, WALK, WLOU, TOMB\n\nVariables: Daily Water_temperature", "start_datetime": "2023-11-10", "end_datetime": "2024-01-04", "providers": [ diff --git a/catalog/scores/models/model_items/mean.json b/catalog/scores/models/model_items/mean.json index 382799ef1a..a77005267c 100644 --- a/catalog/scores/models/model_items/mean.json +++ b/catalog/scores/models/model_items/mean.json @@ -24,12 +24,6 @@ [-84.2826, 35.9641], [-145.7514, 63.8811], [-149.3705, 68.6611], - [-84.4686, 31.1948], - [-106.8425, 32.5907], - [-89.5857, 45.4937], - [-95.1921, 39.0404], - [-76.56, 38.8901], - [-99.1066, 47.1617], [-87.8039, 32.5417], [-81.4362, 28.1251], [-83.5019, 35.689], @@ -47,13 +41,19 @@ [-66.8687, 17.9696], [-72.1727, 42.5369], [-88.1612, 31.8539], + [-76.56, 38.8901], [-119.7323, 37.1088], [-87.3933, 32.9505], [-119.006, 37.0058], + [-99.1066, 47.1617], [-104.7456, 40.8155], [-99.0588, 35.4106], [-112.4524, 40.1776], [-89.5864, 45.5089], + [-84.4686, 31.1948], + [-106.8425, 32.5907], + [-89.5857, 45.4937], + [-95.1921, 39.0404], [-89.5373, 46.2339], [-78.0418, 39.0337], [-119.2622, 37.0334], diff --git a/catalog/scores/models/model_items/persistenceRW.json b/catalog/scores/models/model_items/persistenceRW.json index 8681304e32..c6e94790b0 100644 --- a/catalog/scores/models/model_items/persistenceRW.json +++ b/catalog/scores/models/model_items/persistenceRW.json @@ -16,53 +16,53 @@ "geometry": { "type": "MultiPoint", "coordinates": [ - [-99.0588, 35.4106], - [-112.4524, 40.1776], - [-84.2826, 35.9641], - [-81.9934, 29.6893], - [-155.3173, 19.5531], - [-105.546, 40.2759], - [-84.4686, 31.1948], - [-106.8425, 32.5907], - [-96.6129, 39.1104], - [-96.5631, 39.1008], - [-67.0769, 18.0213], - [-88.1612, 31.8539], [-119.7323, 37.1088], [-119.2622, 37.0334], [-110.8355, 31.9107], [-89.5864, 45.5089], [-103.0293, 40.4619], [-87.3933, 32.9505], + [-67.0769, 18.0213], + [-88.1612, 31.8539], + [-80.5248, 37.3783], + [-109.3883, 38.2483], + [-105.5824, 40.0543], + [-100.9154, 46.7697], [-87.8039, 32.5417], [-81.4362, 28.1251], [-83.5019, 35.689], [-66.8687, 17.9696], [-72.1727, 42.5369], [-149.2133, 63.8758], - [-80.5248, 37.3783], - [-109.3883, 38.2483], - [-105.5824, 40.0543], - [-100.9154, 46.7697], - [-89.7048, 45.9983], + [-84.4686, 31.1948], + [-106.8425, 32.5907], + [-96.6129, 39.1104], + [-96.5631, 39.1008], + [-97.7823, 33.3785], [-99.1139, 47.1591], [-99.2531, 47.1298], + [-111.7979, 40.7839], [-82.0177, 29.6878], + [-122.3303, 45.7624], + [-99.2413, 47.1282], + [-121.9519, 45.8205], + [-110.5391, 44.9535], + [-89.7048, 45.9983], [-88.1589, 31.8534], [-149.6106, 68.6307], - [-122.3303, 45.7624], [-156.6194, 71.2824], [-71.2874, 44.0639], [-78.0418, 39.0337], [-147.5026, 65.154], + [-81.9934, 29.6893], + [-155.3173, 19.5531], + [-105.546, 40.2759], [-78.1395, 38.8929], [-76.56, 38.8901], [-89.5373, 46.2339], - [-99.2413, 47.1282], - [-121.9519, 45.8205], - [-110.5391, 44.9535], - [-97.7823, 33.3785], - [-111.7979, 40.7839], + [-99.0588, 35.4106], + [-112.4524, 40.1776], + [-84.2826, 35.9641], [-149.3705, 68.6611], [-89.5857, 45.4937], [-95.1921, 39.0404], @@ -81,26 +81,26 @@ [-77.9832, 39.0956], [-121.9338, 45.7908], [-87.4077, 32.9604], - [-97.57, 33.4012], - [-104.7456, 40.8155], - [-99.1066, 47.1617], - [-145.7514, 63.8811], - [-96.6242, 34.4442], [-87.7982, 32.5415], [-147.504, 65.1532], [-105.5442, 40.035], [-89.4737, 46.2097], - [-119.006, 37.0058], [-111.5081, 33.751], [-105.9154, 39.8914], - [-102.4471, 39.7582], + [-97.57, 33.4012], + [-104.7456, 40.8155], + [-99.1066, 47.1617], + [-145.7514, 63.8811], + [-119.006, 37.0058], + [-96.6242, 34.4442], [-82.0084, 29.676], + [-102.4471, 39.7582], [-119.2575, 37.0597], [-110.5871, 44.9501] ] }, "properties": { - "description": ["\nmodel info: Random walk from the fable package with ensembles used to represent uncertainty\n\nSites: OAES, ONAQ, ORNL, OSBS, PUUM, RMNP, JERC, JORN, KONA, KONZ, LAJA, LENO, SJER, SOAP, SRER, STEI, STER, TALL, DELA, DSNY, GRSM, GUAN, HARV, HEAL, MLBS, MOAB, NIWO, NOGP, LIRO, PRLA, PRPO, SUGG, TOMB, TOOK, ABBY, BARR, BART, BLAN, BONA, SCBI, SERC, UNDE, WOOD, WREF, YELL, PRIN, REDB, TOOL, TREE, UKFS, CUPE, FLNT, GUIL, HOPB, KING, MCDI, MCRA, OKSR, POSE, TECR, WALK, LECO, LEWI, MART, MAYF, CLBJ, CPER, DCFS, DEJU, BLUE, BLWA, CARI, COMO, CRAM, TEAK, SYCA, WLOU, ARIK, BARC, BIGC, BLDE\n\nVariables: Daily Red_chromatic_coordinate, Daily Net_ecosystem_exchange, Daily Green_chromatic_coordinate, Daily Chlorophyll_a, Daily Dissolved_oxygen, Daily Water_temperature", "\nmodel info: NA\n\nSites: OAES, ONAQ, ORNL, OSBS, PUUM, RMNP, JERC, JORN, KONA, KONZ, LAJA, LENO, SJER, SOAP, SRER, STEI, STER, TALL, DELA, DSNY, GRSM, GUAN, HARV, HEAL, MLBS, MOAB, NIWO, NOGP, LIRO, PRLA, PRPO, SUGG, TOMB, TOOK, ABBY, BARR, BART, BLAN, BONA, SCBI, SERC, UNDE, WOOD, WREF, YELL, PRIN, REDB, TOOL, TREE, UKFS, CUPE, FLNT, GUIL, HOPB, KING, MCDI, MCRA, OKSR, POSE, TECR, WALK, LECO, LEWI, MART, MAYF, CLBJ, CPER, DCFS, DEJU, BLUE, BLWA, CARI, COMO, CRAM, TEAK, SYCA, WLOU, ARIK, BARC, BIGC, BLDE\n\nVariables: Daily Red_chromatic_coordinate, Daily Net_ecosystem_exchange, Daily Green_chromatic_coordinate, Daily Chlorophyll_a, Daily Dissolved_oxygen, Daily Water_temperature"], + "description": ["\nmodel info: Random walk from the fable package with ensembles used to represent uncertainty\n\nSites: SJER, SOAP, SRER, STEI, STER, TALL, LAJA, LENO, MLBS, MOAB, NIWO, NOGP, DELA, DSNY, GRSM, GUAN, HARV, HEAL, JERC, JORN, KONA, KONZ, PRIN, PRLA, PRPO, REDB, SUGG, ABBY, WOOD, WREF, YELL, LIRO, TOMB, TOOK, BARR, BART, BLAN, BONA, OSBS, PUUM, RMNP, SCBI, SERC, UNDE, OAES, ONAQ, ORNL, TOOL, TREE, UKFS, CUPE, FLNT, GUIL, HOPB, KING, MCDI, MCRA, OKSR, POSE, TECR, WALK, LECO, LEWI, MART, MAYF, BLWA, CARI, COMO, CRAM, SYCA, WLOU, CLBJ, CPER, DCFS, DEJU, TEAK, BLUE, BARC, ARIK, BIGC, BLDE\n\nVariables: Daily Net_ecosystem_exchange, Daily Green_chromatic_coordinate, Daily Dissolved_oxygen, Daily Red_chromatic_coordinate, Daily Chlorophyll_a, Daily Water_temperature", "\nmodel info: NA\n\nSites: SJER, SOAP, SRER, STEI, STER, TALL, LAJA, LENO, MLBS, MOAB, NIWO, NOGP, DELA, DSNY, GRSM, GUAN, HARV, HEAL, JERC, JORN, KONA, KONZ, PRIN, PRLA, PRPO, REDB, SUGG, ABBY, WOOD, WREF, YELL, LIRO, TOMB, TOOK, BARR, BART, BLAN, BONA, OSBS, PUUM, RMNP, SCBI, SERC, UNDE, OAES, ONAQ, ORNL, TOOL, TREE, UKFS, CUPE, FLNT, GUIL, HOPB, KING, MCDI, MCRA, OKSR, POSE, TECR, WALK, LECO, LEWI, MART, MAYF, BLWA, CARI, COMO, CRAM, SYCA, WLOU, CLBJ, CPER, DCFS, DEJU, TEAK, BLUE, BARC, ARIK, BIGC, BLDE\n\nVariables: Daily Net_ecosystem_exchange, Daily Green_chromatic_coordinate, Daily Dissolved_oxygen, Daily Red_chromatic_coordinate, Daily Chlorophyll_a, Daily Water_temperature"], "start_datetime": "2023-11-15", "end_datetime": "2024-01-09", "providers": [ @@ -125,11 +125,11 @@ "keywords": [ "Forecasting", "neon4cast", - "Daily Red_chromatic_coordinate", "Daily Net_ecosystem_exchange", "Daily Green_chromatic_coordinate", - "Daily Chlorophyll_a", "Daily Dissolved_oxygen", + "Daily Red_chromatic_coordinate", + "Daily Chlorophyll_a", "Daily Water_temperature" ], "table:columns": [ @@ -282,34 +282,34 @@ "description": "The link to the model code provided by the model submission team" }, "3": { - "type": "application/x-parquet", - "title": "Database Access for Daily Red_chromatic_coordinate", - "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=persistenceRW?endpoint_override=sdsc.osn.xsede.org", - "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=persistenceRW?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" - }, - "4": { "type": "application/x-parquet", "title": "Database Access for Daily Net_ecosystem_exchange", "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=nee/model_id=persistenceRW?endpoint_override=sdsc.osn.xsede.org", "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=nee/model_id=persistenceRW?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, - "5": { + "4": { "type": "application/x-parquet", "title": "Database Access for Daily Green_chromatic_coordinate", "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=gcc_90/model_id=persistenceRW?endpoint_override=sdsc.osn.xsede.org", "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=gcc_90/model_id=persistenceRW?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, + "5": { + "type": "application/x-parquet", + "title": "Database Access for Daily Dissolved_oxygen", + "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=persistenceRW?endpoint_override=sdsc.osn.xsede.org", + "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=persistenceRW?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + }, "6": { "type": "application/x-parquet", - "title": "Database Access for Daily Chlorophyll_a", - "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=chla/model_id=persistenceRW?endpoint_override=sdsc.osn.xsede.org", - "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=chla/model_id=persistenceRW?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + "title": "Database Access for Daily Red_chromatic_coordinate", + "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=persistenceRW?endpoint_override=sdsc.osn.xsede.org", + "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=persistenceRW?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, "7": { "type": "application/x-parquet", - "title": "Database Access for Daily Dissolved_oxygen", - "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=persistenceRW?endpoint_override=sdsc.osn.xsede.org", - "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=persistenceRW?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + "title": "Database Access for Daily Chlorophyll_a", + "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=chla/model_id=persistenceRW?endpoint_override=sdsc.osn.xsede.org", + "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=chla/model_id=persistenceRW?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, "8": { "type": "application/x-parquet", diff --git a/catalog/scores/models/model_items/tg_arima.json b/catalog/scores/models/model_items/tg_arima.json index 68e95e2956..8b326b97b8 100644 --- a/catalog/scores/models/model_items/tg_arima.json +++ b/catalog/scores/models/model_items/tg_arima.json @@ -16,40 +16,6 @@ "geometry": { "type": "MultiPoint", "coordinates": [ - [-96.6038, 39.1051], - [-83.5038, 35.6904], - [-77.9832, 39.0956], - [-89.7048, 45.9983], - [-121.9338, 45.7908], - [-87.4077, 32.9604], - [-96.443, 38.9459], - [-122.1655, 44.2596], - [-149.143, 68.6698], - [-78.1473, 38.8943], - [-97.7823, 33.3785], - [-99.1139, 47.1591], - [-99.2531, 47.1298], - [-111.7979, 40.7839], - [-82.0177, 29.6878], - [-111.5081, 33.751], - [-119.0274, 36.9559], - [-88.1589, 31.8534], - [-149.6106, 68.6307], - [-84.2793, 35.9574], - [-105.9154, 39.8914], - [-102.4471, 39.7582], - [-82.0084, 29.676], - [-119.2575, 37.0597], - [-110.5871, 44.9501], - [-96.6242, 34.4442], - [-87.7982, 32.5415], - [-147.504, 65.1532], - [-105.5442, 40.035], - [-89.4737, 46.2097], - [-66.9868, 18.1135], - [-84.4374, 31.1854], - [-66.7987, 18.1741], - [-72.3295, 42.4719], [-122.3303, 45.7624], [-156.6194, 71.2824], [-71.2874, 44.0639], @@ -96,11 +62,45 @@ [-89.5373, 46.2339], [-99.2413, 47.1282], [-121.9519, 45.8205], - [-110.5391, 44.9535] + [-110.5391, 44.9535], + [-96.6038, 39.1051], + [-83.5038, 35.6904], + [-77.9832, 39.0956], + [-89.7048, 45.9983], + [-121.9338, 45.7908], + [-87.4077, 32.9604], + [-96.443, 38.9459], + [-122.1655, 44.2596], + [-149.143, 68.6698], + [-78.1473, 38.8943], + [-97.7823, 33.3785], + [-99.1139, 47.1591], + [-99.2531, 47.1298], + [-111.7979, 40.7839], + [-82.0177, 29.6878], + [-111.5081, 33.751], + [-119.0274, 36.9559], + [-88.1589, 31.8534], + [-149.6106, 68.6307], + [-84.2793, 35.9574], + [-105.9154, 39.8914], + [-102.4471, 39.7582], + [-82.0084, 29.676], + [-119.2575, 37.0597], + [-110.5871, 44.9501], + [-96.6242, 34.4442], + [-87.7982, 32.5415], + [-147.504, 65.1532], + [-105.5442, 40.035], + [-89.4737, 46.2097], + [-66.9868, 18.1135], + [-84.4374, 31.1854], + [-66.7987, 18.1741], + [-72.3295, 42.4719] ] }, "properties": { - "description": "\nmodel info: NA\n\nSites: KING, LECO, LEWI, LIRO, MART, MAYF, MCDI, MCRA, OKSR, POSE, PRIN, PRLA, PRPO, REDB, SUGG, SYCA, TECR, TOMB, TOOK, WALK, WLOU, ARIK, BARC, BIGC, BLDE, BLUE, BLWA, CARI, COMO, CRAM, CUPE, FLNT, GUIL, HOPB, ABBY, BARR, BART, BLAN, BONA, CLBJ, CPER, DCFS, DEJU, DELA, DSNY, GRSM, GUAN, HARV, HEAL, JERC, JORN, KONA, KONZ, LAJA, LENO, MLBS, MOAB, NIWO, NOGP, OAES, ONAQ, ORNL, OSBS, PUUM, RMNP, SCBI, SERC, SJER, SOAP, SRER, STEI, STER, TALL, TEAK, TOOL, TREE, UKFS, UNDE, WOOD, WREF, YELL\n\nVariables: Daily Dissolved_oxygen, Daily Red_chromatic_coordinate, Daily latent_heat_flux, Daily Net_ecosystem_exchange, Daily Chlorophyll_a, Daily Green_chromatic_coordinate, Daily Water_temperature, Weekly beetle_community_abundance, Weekly beetle_community_richness, Weekly Amblyomma_americanum_population", + "description": "\nmodel info: NA\n\nSites: ABBY, BARR, BART, BLAN, BONA, CLBJ, CPER, DCFS, DEJU, DELA, DSNY, GRSM, GUAN, HARV, HEAL, JERC, JORN, KONA, KONZ, LAJA, LENO, MLBS, MOAB, NIWO, NOGP, OAES, ONAQ, ORNL, OSBS, PUUM, RMNP, SCBI, SERC, SJER, SOAP, SRER, STEI, STER, TALL, TEAK, TOOL, TREE, UKFS, UNDE, WOOD, WREF, YELL, KING, LECO, LEWI, LIRO, MART, MAYF, MCDI, MCRA, OKSR, POSE, PRIN, PRLA, PRPO, REDB, SUGG, SYCA, TECR, TOMB, TOOK, WALK, WLOU, ARIK, BARC, BIGC, BLDE, BLUE, BLWA, CARI, COMO, CRAM, CUPE, FLNT, GUIL, HOPB\n\nVariables: Daily latent_heat_flux, Daily Net_ecosystem_exchange, Daily Dissolved_oxygen, Daily Chlorophyll_a, Daily Green_chromatic_coordinate, Daily Red_chromatic_coordinate, Daily Water_temperature, Weekly beetle_community_abundance, Weekly beetle_community_richness, Weekly Amblyomma_americanum_population", "start_datetime": "2023-01-01", "end_datetime": "2024-11-25", "providers": [ @@ -125,12 +125,12 @@ "keywords": [ "Forecasting", "neon4cast", - "Daily Dissolved_oxygen", - "Daily Red_chromatic_coordinate", "Daily latent_heat_flux", "Daily Net_ecosystem_exchange", + "Daily Dissolved_oxygen", "Daily Chlorophyll_a", "Daily Green_chromatic_coordinate", + "Daily Red_chromatic_coordinate", "Daily Water_temperature", "Weekly beetle_community_abundance", "Weekly beetle_community_richness", @@ -286,41 +286,41 @@ "description": "The link to the model code provided by the model submission team" }, "3": { - "type": "application/x-parquet", - "title": "Database Access for Daily Dissolved_oxygen", - "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=tg_arima?endpoint_override=sdsc.osn.xsede.org", - "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=tg_arima?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" - }, - "4": { - "type": "application/x-parquet", - "title": "Database Access for Daily Red_chromatic_coordinate", - "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_arima?endpoint_override=sdsc.osn.xsede.org", - "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_arima?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" - }, - "5": { "type": "application/x-parquet", "title": "Database Access for Daily latent_heat_flux", "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=le/model_id=tg_arima?endpoint_override=sdsc.osn.xsede.org", "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=le/model_id=tg_arima?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, - "6": { + "4": { "type": "application/x-parquet", "title": "Database Access for Daily Net_ecosystem_exchange", "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=nee/model_id=tg_arima?endpoint_override=sdsc.osn.xsede.org", "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=nee/model_id=tg_arima?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, - "7": { + "5": { + "type": "application/x-parquet", + "title": "Database Access for Daily Dissolved_oxygen", + "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=tg_arima?endpoint_override=sdsc.osn.xsede.org", + "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=tg_arima?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + }, + "6": { "type": "application/x-parquet", "title": "Database Access for Daily Chlorophyll_a", "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=chla/model_id=tg_arima?endpoint_override=sdsc.osn.xsede.org", "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=chla/model_id=tg_arima?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, - "8": { + "7": { "type": "application/x-parquet", "title": "Database Access for Daily Green_chromatic_coordinate", "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=gcc_90/model_id=tg_arima?endpoint_override=sdsc.osn.xsede.org", "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=gcc_90/model_id=tg_arima?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, + "8": { + "type": "application/x-parquet", + "title": "Database Access for Daily Red_chromatic_coordinate", + "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_arima?endpoint_override=sdsc.osn.xsede.org", + "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_arima?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + }, "9": { "type": "application/x-parquet", "title": "Database Access for Daily Water_temperature", diff --git a/catalog/scores/models/model_items/tg_bag_mlp.json b/catalog/scores/models/model_items/tg_bag_mlp.json index d1c3e121a7..c2740301ef 100644 --- a/catalog/scores/models/model_items/tg_bag_mlp.json +++ b/catalog/scores/models/model_items/tg_bag_mlp.json @@ -16,36 +16,6 @@ "geometry": { "type": "MultiPoint", "coordinates": [ - [-102.4471, 39.7582], - [-82.0084, 29.676], - [-119.2575, 37.0597], - [-110.5871, 44.9501], - [-96.6242, 34.4442], - [-87.7982, 32.5415], - [-147.504, 65.1532], - [-105.5442, 40.035], - [-89.4737, 46.2097], - [-66.9868, 18.1135], - [-84.4374, 31.1854], - [-66.7987, 18.1741], - [-72.3295, 42.4719], - [-96.6038, 39.1051], - [-83.5038, 35.6904], - [-77.9832, 39.0956], - [-89.7048, 45.9983], - [-121.9338, 45.7908], - [-87.4077, 32.9604], - [-96.443, 38.9459], - [-122.1655, 44.2596], - [-149.143, 68.6698], - [-78.1473, 38.8943], - [-97.7823, 33.3785], - [-99.1139, 47.1591], - [-99.2531, 47.1298], - [-111.7979, 40.7839], - [-82.0177, 29.6878], - [-111.5081, 33.751], - [-119.0274, 36.9559], [-122.3303, 45.7624], [-156.6194, 71.2824], [-71.2874, 44.0639], @@ -78,6 +48,36 @@ [-155.3173, 19.5531], [-105.546, 40.2759], [-78.1395, 38.8929], + [-102.4471, 39.7582], + [-82.0084, 29.676], + [-119.2575, 37.0597], + [-110.5871, 44.9501], + [-96.6242, 34.4442], + [-87.7982, 32.5415], + [-147.504, 65.1532], + [-105.5442, 40.035], + [-89.4737, 46.2097], + [-66.9868, 18.1135], + [-84.4374, 31.1854], + [-66.7987, 18.1741], + [-72.3295, 42.4719], + [-96.6038, 39.1051], + [-83.5038, 35.6904], + [-77.9832, 39.0956], + [-89.7048, 45.9983], + [-121.9338, 45.7908], + [-87.4077, 32.9604], + [-96.443, 38.9459], + [-122.1655, 44.2596], + [-149.143, 68.6698], + [-78.1473, 38.8943], + [-97.7823, 33.3785], + [-99.1139, 47.1591], + [-99.2531, 47.1298], + [-111.7979, 40.7839], + [-82.0177, 29.6878], + [-111.5081, 33.751], + [-119.0274, 36.9559], [-76.56, 38.8901], [-119.7323, 37.1088], [-119.2622, 37.0334], @@ -125,11 +125,11 @@ "keywords": [ "Forecasting", "neon4cast", - "Daily Dissolved_oxygen", "Daily Net_ecosystem_exchange", + "Daily Dissolved_oxygen", "Daily Green_chromatic_coordinate", - "Daily Red_chromatic_coordinate", "Daily Chlorophyll_a", + "Daily Red_chromatic_coordinate", "Daily Water_temperature", "Daily latent_heat_flux" ], @@ -283,17 +283,17 @@ "description": "The link to the model code provided by the model submission team" }, "3": { - "type": "application/x-parquet", - "title": "Database Access for Daily Dissolved_oxygen", - "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=tg_bag_mlp?endpoint_override=sdsc.osn.xsede.org", - "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=tg_bag_mlp?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" - }, - "4": { "type": "application/x-parquet", "title": "Database Access for Daily Net_ecosystem_exchange", "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=nee/model_id=tg_bag_mlp?endpoint_override=sdsc.osn.xsede.org", "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=nee/model_id=tg_bag_mlp?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, + "4": { + "type": "application/x-parquet", + "title": "Database Access for Daily Dissolved_oxygen", + "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=tg_bag_mlp?endpoint_override=sdsc.osn.xsede.org", + "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=tg_bag_mlp?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + }, "5": { "type": "application/x-parquet", "title": "Database Access for Daily Green_chromatic_coordinate", @@ -301,17 +301,17 @@ "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=gcc_90/model_id=tg_bag_mlp?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, "6": { - "type": "application/x-parquet", - "title": "Database Access for Daily Red_chromatic_coordinate", - "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_bag_mlp?endpoint_override=sdsc.osn.xsede.org", - "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_bag_mlp?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" - }, - "7": { "type": "application/x-parquet", "title": "Database Access for Daily Chlorophyll_a", "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=chla/model_id=tg_bag_mlp?endpoint_override=sdsc.osn.xsede.org", "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=chla/model_id=tg_bag_mlp?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, + "7": { + "type": "application/x-parquet", + "title": "Database Access for Daily Red_chromatic_coordinate", + "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_bag_mlp?endpoint_override=sdsc.osn.xsede.org", + "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_bag_mlp?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + }, "8": { "type": "application/x-parquet", "title": "Database Access for Daily Water_temperature", diff --git a/catalog/scores/models/model_items/tg_ets.json b/catalog/scores/models/model_items/tg_ets.json index b4b8e2b780..2fd1dfb450 100644 --- a/catalog/scores/models/model_items/tg_ets.json +++ b/catalog/scores/models/model_items/tg_ets.json @@ -16,29 +16,6 @@ "geometry": { "type": "MultiPoint", "coordinates": [ - [-100.9154, 46.7697], - [-99.0588, 35.4106], - [-112.4524, 40.1776], - [-84.2826, 35.9641], - [-81.9934, 29.6893], - [-155.3173, 19.5531], - [-105.546, 40.2759], - [-78.1395, 38.8929], - [-76.56, 38.8901], - [-119.7323, 37.1088], - [-119.2622, 37.0334], - [-110.8355, 31.9107], - [-89.5864, 45.5089], - [-103.0293, 40.4619], - [-87.3933, 32.9505], - [-119.006, 37.0058], - [-149.3705, 68.6611], - [-89.5857, 45.4937], - [-95.1921, 39.0404], - [-89.5373, 46.2339], - [-99.2413, 47.1282], - [-121.9519, 45.8205], - [-110.5391, 44.9535], [-122.3303, 45.7624], [-156.6194, 71.2824], [-71.2874, 44.0639], @@ -63,6 +40,29 @@ [-80.5248, 37.3783], [-109.3883, 38.2483], [-105.5824, 40.0543], + [-100.9154, 46.7697], + [-99.0588, 35.4106], + [-112.4524, 40.1776], + [-84.2826, 35.9641], + [-81.9934, 29.6893], + [-155.3173, 19.5531], + [-105.546, 40.2759], + [-78.1395, 38.8929], + [-76.56, 38.8901], + [-119.7323, 37.1088], + [-119.2622, 37.0334], + [-110.8355, 31.9107], + [-89.5864, 45.5089], + [-103.0293, 40.4619], + [-87.3933, 32.9505], + [-119.006, 37.0058], + [-149.3705, 68.6611], + [-89.5857, 45.4937], + [-95.1921, 39.0404], + [-89.5373, 46.2339], + [-99.2413, 47.1282], + [-121.9519, 45.8205], + [-110.5391, 44.9535], [-102.4471, 39.7582], [-82.0084, 29.676], [-119.2575, 37.0597], @@ -100,7 +100,7 @@ ] }, "properties": { - "description": "\nmodel info: NA\n\nSites: NOGP, OAES, ONAQ, ORNL, OSBS, PUUM, RMNP, SCBI, SERC, SJER, SOAP, SRER, STEI, STER, TALL, TEAK, TOOL, TREE, UKFS, UNDE, WOOD, WREF, YELL, ABBY, BARR, BART, BLAN, BONA, CLBJ, CPER, DCFS, DEJU, DELA, DSNY, GRSM, GUAN, HARV, HEAL, JERC, JORN, KONA, KONZ, LAJA, LENO, MLBS, MOAB, NIWO, ARIK, BARC, BIGC, BLDE, BLUE, BLWA, CARI, COMO, CRAM, CUPE, FLNT, GUIL, HOPB, KING, LECO, LEWI, LIRO, MART, MAYF, MCDI, MCRA, OKSR, POSE, PRIN, PRLA, PRPO, REDB, SUGG, SYCA, TECR, TOMB, TOOK, WALK, WLOU\n\nVariables: Daily Net_ecosystem_exchange, Daily Dissolved_oxygen, Daily Red_chromatic_coordinate, Daily latent_heat_flux, Daily Chlorophyll_a, Daily Green_chromatic_coordinate, Daily Water_temperature, Weekly beetle_community_abundance, Weekly Amblyomma_americanum_population, Weekly beetle_community_richness", + "description": "\nmodel info: NA\n\nSites: ABBY, BARR, BART, BLAN, BONA, CLBJ, CPER, DCFS, DEJU, DELA, DSNY, GRSM, GUAN, HARV, HEAL, JERC, JORN, KONA, KONZ, LAJA, LENO, MLBS, MOAB, NIWO, NOGP, OAES, ONAQ, ORNL, OSBS, PUUM, RMNP, SCBI, SERC, SJER, SOAP, SRER, STEI, STER, TALL, TEAK, TOOL, TREE, UKFS, UNDE, WOOD, WREF, YELL, ARIK, BARC, BIGC, BLDE, BLUE, BLWA, CARI, COMO, CRAM, CUPE, FLNT, GUIL, HOPB, KING, LECO, LEWI, LIRO, MART, MAYF, MCDI, MCRA, OKSR, POSE, PRIN, PRLA, PRPO, REDB, SUGG, SYCA, TECR, TOMB, TOOK, WALK, WLOU\n\nVariables: Daily latent_heat_flux, Daily Net_ecosystem_exchange, Daily Dissolved_oxygen, Daily Chlorophyll_a, Daily Green_chromatic_coordinate, Daily Red_chromatic_coordinate, Daily Water_temperature, Weekly beetle_community_abundance, Weekly Amblyomma_americanum_population, Weekly beetle_community_richness", "start_datetime": "2023-01-01", "end_datetime": "2024-11-25", "providers": [ @@ -125,12 +125,12 @@ "keywords": [ "Forecasting", "neon4cast", + "Daily latent_heat_flux", "Daily Net_ecosystem_exchange", "Daily Dissolved_oxygen", - "Daily Red_chromatic_coordinate", - "Daily latent_heat_flux", "Daily Chlorophyll_a", "Daily Green_chromatic_coordinate", + "Daily Red_chromatic_coordinate", "Daily Water_temperature", "Weekly beetle_community_abundance", "Weekly Amblyomma_americanum_population", @@ -286,41 +286,41 @@ "description": "The link to the model code provided by the model submission team" }, "3": { + "type": "application/x-parquet", + "title": "Database Access for Daily latent_heat_flux", + "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=le/model_id=tg_ets?endpoint_override=sdsc.osn.xsede.org", + "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=le/model_id=tg_ets?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + }, + "4": { "type": "application/x-parquet", "title": "Database Access for Daily Net_ecosystem_exchange", "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=nee/model_id=tg_ets?endpoint_override=sdsc.osn.xsede.org", "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=nee/model_id=tg_ets?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, - "4": { + "5": { "type": "application/x-parquet", "title": "Database Access for Daily Dissolved_oxygen", "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=tg_ets?endpoint_override=sdsc.osn.xsede.org", "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=tg_ets?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, - "5": { - "type": "application/x-parquet", - "title": "Database Access for Daily Red_chromatic_coordinate", - "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_ets?endpoint_override=sdsc.osn.xsede.org", - "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_ets?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" - }, "6": { - "type": "application/x-parquet", - "title": "Database Access for Daily latent_heat_flux", - "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=le/model_id=tg_ets?endpoint_override=sdsc.osn.xsede.org", - "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=le/model_id=tg_ets?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" - }, - "7": { "type": "application/x-parquet", "title": "Database Access for Daily Chlorophyll_a", "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=chla/model_id=tg_ets?endpoint_override=sdsc.osn.xsede.org", "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=chla/model_id=tg_ets?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, - "8": { + "7": { "type": "application/x-parquet", "title": "Database Access for Daily Green_chromatic_coordinate", "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=gcc_90/model_id=tg_ets?endpoint_override=sdsc.osn.xsede.org", "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=gcc_90/model_id=tg_ets?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, + "8": { + "type": "application/x-parquet", + "title": "Database Access for Daily Red_chromatic_coordinate", + "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_ets?endpoint_override=sdsc.osn.xsede.org", + "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_ets?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + }, "9": { "type": "application/x-parquet", "title": "Database Access for Daily Water_temperature", diff --git a/catalog/scores/models/model_items/tg_humidity_lm.json b/catalog/scores/models/model_items/tg_humidity_lm.json index 89944362ae..b5e7ac4a06 100644 --- a/catalog/scores/models/model_items/tg_humidity_lm.json +++ b/catalog/scores/models/model_items/tg_humidity_lm.json @@ -32,6 +32,21 @@ [-99.2413, 47.1282], [-121.9519, 45.8205], [-110.5391, 44.9535], + [-122.3303, 45.7624], + [-156.6194, 71.2824], + [-71.2874, 44.0639], + [-78.0418, 39.0337], + [-147.5026, 65.154], + [-97.57, 33.4012], + [-104.7456, 40.8155], + [-99.1066, 47.1617], + [-145.7514, 63.8811], + [-87.8039, 32.5417], + [-81.4362, 28.1251], + [-83.5019, 35.689], + [-66.8687, 17.9696], + [-72.1727, 42.5369], + [-149.2133, 63.8758], [-84.4686, 31.1948], [-106.8425, 32.5907], [-96.6129, 39.1104], @@ -48,21 +63,6 @@ [-81.9934, 29.6893], [-155.3173, 19.5531], [-105.546, 40.2759], - [-122.3303, 45.7624], - [-156.6194, 71.2824], - [-71.2874, 44.0639], - [-78.0418, 39.0337], - [-147.5026, 65.154], - [-97.57, 33.4012], - [-104.7456, 40.8155], - [-99.1066, 47.1617], - [-145.7514, 63.8811], - [-87.8039, 32.5417], - [-81.4362, 28.1251], - [-83.5019, 35.689], - [-66.8687, 17.9696], - [-72.1727, 42.5369], - [-149.2133, 63.8758], [-82.0084, 29.676], [-87.7982, 32.5415], [-89.4737, 46.2097], @@ -100,7 +100,7 @@ ] }, "properties": { - "description": "\nmodel info: NA\n\nSites: SCBI, SERC, SJER, SOAP, SRER, STEI, STER, TALL, TEAK, TOOL, TREE, UKFS, UNDE, WOOD, WREF, YELL, JERC, JORN, KONA, KONZ, LAJA, LENO, MLBS, MOAB, NIWO, NOGP, OAES, ONAQ, ORNL, OSBS, PUUM, RMNP, ABBY, BARR, BART, BLAN, BONA, CLBJ, CPER, DCFS, DEJU, DELA, DSNY, GRSM, GUAN, HARV, HEAL, BARC, BLWA, CRAM, FLNT, LIRO, PRLA, PRPO, SUGG, TOMB, TOOK, SYCA, TECR, WALK, WLOU, ARIK, BIGC, BLDE, BLUE, CARI, COMO, CUPE, GUIL, HOPB, KING, LECO, LEWI, MART, MAYF, MCDI, MCRA, OKSR, POSE, PRIN, REDB\n\nVariables: Daily Net_ecosystem_exchange, Daily latent_heat_flux, Daily Green_chromatic_coordinate, Daily Chlorophyll_a, Daily Dissolved_oxygen, Daily Red_chromatic_coordinate, Daily Water_temperature, Weekly beetle_community_abundance, Weekly beetle_community_richness, Weekly Amblyomma_americanum_population", + "description": "\nmodel info: NA\n\nSites: SCBI, SERC, SJER, SOAP, SRER, STEI, STER, TALL, TEAK, TOOL, TREE, UKFS, UNDE, WOOD, WREF, YELL, ABBY, BARR, BART, BLAN, BONA, CLBJ, CPER, DCFS, DEJU, DELA, DSNY, GRSM, GUAN, HARV, HEAL, JERC, JORN, KONA, KONZ, LAJA, LENO, MLBS, MOAB, NIWO, NOGP, OAES, ONAQ, ORNL, OSBS, PUUM, RMNP, BARC, BLWA, CRAM, FLNT, LIRO, PRLA, PRPO, SUGG, TOMB, TOOK, SYCA, TECR, WALK, WLOU, ARIK, BIGC, BLDE, BLUE, CARI, COMO, CUPE, GUIL, HOPB, KING, LECO, LEWI, MART, MAYF, MCDI, MCRA, OKSR, POSE, PRIN, REDB\n\nVariables: Daily Net_ecosystem_exchange, Daily Green_chromatic_coordinate, Daily latent_heat_flux, Daily Chlorophyll_a, Daily Red_chromatic_coordinate, Daily Dissolved_oxygen, Daily Water_temperature, Weekly beetle_community_abundance, Weekly beetle_community_richness, Weekly Amblyomma_americanum_population", "start_datetime": "2023-11-14", "end_datetime": "2024-01-09", "providers": [ @@ -126,11 +126,11 @@ "Forecasting", "neon4cast", "Daily Net_ecosystem_exchange", - "Daily latent_heat_flux", "Daily Green_chromatic_coordinate", + "Daily latent_heat_flux", "Daily Chlorophyll_a", - "Daily Dissolved_oxygen", "Daily Red_chromatic_coordinate", + "Daily Dissolved_oxygen", "Daily Water_temperature", "Weekly beetle_community_abundance", "Weekly beetle_community_richness", @@ -292,17 +292,17 @@ "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=nee/model_id=tg_humidity_lm?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, "4": { - "type": "application/x-parquet", - "title": "Database Access for Daily latent_heat_flux", - "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=le/model_id=tg_humidity_lm?endpoint_override=sdsc.osn.xsede.org", - "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=le/model_id=tg_humidity_lm?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" - }, - "5": { "type": "application/x-parquet", "title": "Database Access for Daily Green_chromatic_coordinate", "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=gcc_90/model_id=tg_humidity_lm?endpoint_override=sdsc.osn.xsede.org", "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=gcc_90/model_id=tg_humidity_lm?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, + "5": { + "type": "application/x-parquet", + "title": "Database Access for Daily latent_heat_flux", + "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=le/model_id=tg_humidity_lm?endpoint_override=sdsc.osn.xsede.org", + "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=le/model_id=tg_humidity_lm?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + }, "6": { "type": "application/x-parquet", "title": "Database Access for Daily Chlorophyll_a", @@ -310,17 +310,17 @@ "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=chla/model_id=tg_humidity_lm?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, "7": { - "type": "application/x-parquet", - "title": "Database Access for Daily Dissolved_oxygen", - "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=tg_humidity_lm?endpoint_override=sdsc.osn.xsede.org", - "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=tg_humidity_lm?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" - }, - "8": { "type": "application/x-parquet", "title": "Database Access for Daily Red_chromatic_coordinate", "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_humidity_lm?endpoint_override=sdsc.osn.xsede.org", "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_humidity_lm?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, + "8": { + "type": "application/x-parquet", + "title": "Database Access for Daily Dissolved_oxygen", + "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=tg_humidity_lm?endpoint_override=sdsc.osn.xsede.org", + "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=tg_humidity_lm?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + }, "9": { "type": "application/x-parquet", "title": "Database Access for Daily Water_temperature", diff --git a/catalog/scores/models/model_items/tg_humidity_lm_all_sites.json b/catalog/scores/models/model_items/tg_humidity_lm_all_sites.json index d2eb8160b6..de90e83fd2 100644 --- a/catalog/scores/models/model_items/tg_humidity_lm_all_sites.json +++ b/catalog/scores/models/model_items/tg_humidity_lm_all_sites.json @@ -100,7 +100,7 @@ ] }, "properties": { - "description": "\nmodel info: NA\n\nSites: ABBY, BARR, BART, BLAN, BONA, CLBJ, CPER, DCFS, DEJU, DELA, DSNY, GRSM, GUAN, HARV, HEAL, JERC, JORN, KONA, KONZ, LAJA, LENO, MLBS, MOAB, NIWO, NOGP, OAES, ONAQ, ORNL, OSBS, PUUM, RMNP, SCBI, SERC, SJER, SOAP, SRER, STEI, STER, TALL, TEAK, TOOL, TREE, UKFS, UNDE, WOOD, WREF, YELL, BARC, BLWA, CRAM, FLNT, LIRO, PRLA, PRPO, SUGG, TOMB, TOOK, OKSR, POSE, PRIN, REDB, SYCA, TECR, WALK, WLOU, ARIK, BIGC, BLDE, BLUE, CARI, COMO, CUPE, GUIL, HOPB, KING, LECO, LEWI, MART, MAYF, MCDI, MCRA\n\nVariables: Daily Net_ecosystem_exchange, Daily Red_chromatic_coordinate, Daily Green_chromatic_coordinate, Daily latent_heat_flux, Daily Chlorophyll_a, Daily Water_temperature, Daily Dissolved_oxygen, Weekly beetle_community_abundance, Weekly beetle_community_richness, Weekly Amblyomma_americanum_population", + "description": "\nmodel info: NA\n\nSites: ABBY, BARR, BART, BLAN, BONA, CLBJ, CPER, DCFS, DEJU, DELA, DSNY, GRSM, GUAN, HARV, HEAL, JERC, JORN, KONA, KONZ, LAJA, LENO, MLBS, MOAB, NIWO, NOGP, OAES, ONAQ, ORNL, OSBS, PUUM, RMNP, SCBI, SERC, SJER, SOAP, SRER, STEI, STER, TALL, TEAK, TOOL, TREE, UKFS, UNDE, WOOD, WREF, YELL, BARC, BLWA, CRAM, FLNT, LIRO, PRLA, PRPO, SUGG, TOMB, TOOK, OKSR, POSE, PRIN, REDB, SYCA, TECR, WALK, WLOU, ARIK, BIGC, BLDE, BLUE, CARI, COMO, CUPE, GUIL, HOPB, KING, LECO, LEWI, MART, MAYF, MCDI, MCRA\n\nVariables: Daily Net_ecosystem_exchange, Daily Green_chromatic_coordinate, Daily latent_heat_flux, Daily Red_chromatic_coordinate, Daily Chlorophyll_a, Daily Water_temperature, Daily Dissolved_oxygen, Weekly beetle_community_abundance, Weekly beetle_community_richness, Weekly Amblyomma_americanum_population", "start_datetime": "2023-11-14", "end_datetime": "2024-01-09", "providers": [ @@ -126,9 +126,9 @@ "Forecasting", "neon4cast", "Daily Net_ecosystem_exchange", - "Daily Red_chromatic_coordinate", "Daily Green_chromatic_coordinate", "Daily latent_heat_flux", + "Daily Red_chromatic_coordinate", "Daily Chlorophyll_a", "Daily Water_temperature", "Daily Dissolved_oxygen", @@ -292,23 +292,23 @@ "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=nee/model_id=tg_humidity_lm_all_sites?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, "4": { - "type": "application/x-parquet", - "title": "Database Access for Daily Red_chromatic_coordinate", - "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_humidity_lm_all_sites?endpoint_override=sdsc.osn.xsede.org", - "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_humidity_lm_all_sites?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" - }, - "5": { "type": "application/x-parquet", "title": "Database Access for Daily Green_chromatic_coordinate", "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=gcc_90/model_id=tg_humidity_lm_all_sites?endpoint_override=sdsc.osn.xsede.org", "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=gcc_90/model_id=tg_humidity_lm_all_sites?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, - "6": { + "5": { "type": "application/x-parquet", "title": "Database Access for Daily latent_heat_flux", "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=le/model_id=tg_humidity_lm_all_sites?endpoint_override=sdsc.osn.xsede.org", "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=le/model_id=tg_humidity_lm_all_sites?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, + "6": { + "type": "application/x-parquet", + "title": "Database Access for Daily Red_chromatic_coordinate", + "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_humidity_lm_all_sites?endpoint_override=sdsc.osn.xsede.org", + "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_humidity_lm_all_sites?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + }, "7": { "type": "application/x-parquet", "title": "Database Access for Daily Chlorophyll_a", diff --git a/catalog/scores/models/model_items/tg_lasso_all_sites.json b/catalog/scores/models/model_items/tg_lasso_all_sites.json index c64428b352..edfad1598a 100644 --- a/catalog/scores/models/model_items/tg_lasso_all_sites.json +++ b/catalog/scores/models/model_items/tg_lasso_all_sites.json @@ -16,15 +16,6 @@ "geometry": { "type": "MultiPoint", "coordinates": [ - [-102.4471, 39.7582], - [-82.0084, 29.676], - [-119.2575, 37.0597], - [-110.5871, 44.9501], - [-96.6242, 34.4442], - [-87.7982, 32.5415], - [-147.504, 65.1532], - [-105.5442, 40.035], - [-89.4737, 46.2097], [-66.9868, 18.1135], [-84.4374, 31.1854], [-66.7987, 18.1741], @@ -50,6 +41,15 @@ [-149.6106, 68.6307], [-84.2793, 35.9574], [-105.9154, 39.8914], + [-102.4471, 39.7582], + [-82.0084, 29.676], + [-119.2575, 37.0597], + [-110.5871, 44.9501], + [-96.6242, 34.4442], + [-87.7982, 32.5415], + [-147.504, 65.1532], + [-105.5442, 40.035], + [-89.4737, 46.2097], [-110.8355, 31.9107], [-89.5864, 45.5089], [-103.0293, 40.4619], @@ -127,9 +127,9 @@ "neon4cast", "Daily Dissolved_oxygen", "Daily Chlorophyll_a", + "Daily Water_temperature", "Daily Green_chromatic_coordinate", "Daily Red_chromatic_coordinate", - "Daily Water_temperature", "Weekly beetle_community_abundance", "Weekly beetle_community_richness", "Weekly Amblyomma_americanum_population" @@ -296,23 +296,23 @@ "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=chla/model_id=tg_lasso_all_sites?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, "5": { + "type": "application/x-parquet", + "title": "Database Access for Daily Water_temperature", + "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=temperature/model_id=tg_lasso_all_sites?endpoint_override=sdsc.osn.xsede.org", + "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=temperature/model_id=tg_lasso_all_sites?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + }, + "6": { "type": "application/x-parquet", "title": "Database Access for Daily Green_chromatic_coordinate", "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=gcc_90/model_id=tg_lasso_all_sites?endpoint_override=sdsc.osn.xsede.org", "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=gcc_90/model_id=tg_lasso_all_sites?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, - "6": { + "7": { "type": "application/x-parquet", "title": "Database Access for Daily Red_chromatic_coordinate", "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_lasso_all_sites?endpoint_override=sdsc.osn.xsede.org", "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_lasso_all_sites?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, - "7": { - "type": "application/x-parquet", - "title": "Database Access for Daily Water_temperature", - "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=temperature/model_id=tg_lasso_all_sites?endpoint_override=sdsc.osn.xsede.org", - "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=temperature/model_id=tg_lasso_all_sites?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" - }, "8": { "type": "application/x-parquet", "title": "Database Access for Weekly beetle_community_abundance", diff --git a/catalog/scores/models/model_items/tg_precip_lm.json b/catalog/scores/models/model_items/tg_precip_lm.json index 75ae781ae7..f9cc69cba6 100644 --- a/catalog/scores/models/model_items/tg_precip_lm.json +++ b/catalog/scores/models/model_items/tg_precip_lm.json @@ -100,7 +100,7 @@ ] }, "properties": { - "description": "\nmodel info: NA\n\nSites: ABBY, BARR, BART, BLAN, BONA, CLBJ, CPER, DCFS, DEJU, DELA, DSNY, GRSM, GUAN, HARV, HEAL, JERC, JORN, KONA, KONZ, LAJA, LENO, MLBS, MOAB, NIWO, NOGP, OAES, ONAQ, ORNL, OSBS, PUUM, RMNP, SCBI, SERC, SJER, SOAP, SRER, STEI, STER, TALL, TEAK, TOOL, TREE, UKFS, UNDE, WOOD, WREF, YELL, SYCA, TECR, TOMB, TOOK, WALK, WLOU, BARC, BLWA, CRAM, FLNT, LIRO, PRLA, PRPO, SUGG, ARIK, BIGC, BLDE, BLUE, CARI, COMO, CUPE, GUIL, HOPB, KING, LECO, LEWI, MART, MAYF, MCDI, MCRA, OKSR, POSE, PRIN, REDB\n\nVariables: Daily Green_chromatic_coordinate, Daily latent_heat_flux, Daily Net_ecosystem_exchange, Daily Red_chromatic_coordinate, Daily Dissolved_oxygen, Daily Chlorophyll_a, Daily Water_temperature, Weekly beetle_community_abundance, Weekly beetle_community_richness, Weekly Amblyomma_americanum_population", + "description": "\nmodel info: NA\n\nSites: ABBY, BARR, BART, BLAN, BONA, CLBJ, CPER, DCFS, DEJU, DELA, DSNY, GRSM, GUAN, HARV, HEAL, JERC, JORN, KONA, KONZ, LAJA, LENO, MLBS, MOAB, NIWO, NOGP, OAES, ONAQ, ORNL, OSBS, PUUM, RMNP, SCBI, SERC, SJER, SOAP, SRER, STEI, STER, TALL, TEAK, TOOL, TREE, UKFS, UNDE, WOOD, WREF, YELL, SYCA, TECR, TOMB, TOOK, WALK, WLOU, BARC, BLWA, CRAM, FLNT, LIRO, PRLA, PRPO, SUGG, ARIK, BIGC, BLDE, BLUE, CARI, COMO, CUPE, GUIL, HOPB, KING, LECO, LEWI, MART, MAYF, MCDI, MCRA, OKSR, POSE, PRIN, REDB\n\nVariables: Daily Green_chromatic_coordinate, Daily latent_heat_flux, Daily Red_chromatic_coordinate, Daily Net_ecosystem_exchange, Daily Dissolved_oxygen, Daily Chlorophyll_a, Daily Water_temperature, Weekly beetle_community_abundance, Weekly beetle_community_richness, Weekly Amblyomma_americanum_population", "start_datetime": "2023-11-14", "end_datetime": "2024-01-09", "providers": [ @@ -127,8 +127,8 @@ "neon4cast", "Daily Green_chromatic_coordinate", "Daily latent_heat_flux", - "Daily Net_ecosystem_exchange", "Daily Red_chromatic_coordinate", + "Daily Net_ecosystem_exchange", "Daily Dissolved_oxygen", "Daily Chlorophyll_a", "Daily Water_temperature", @@ -298,17 +298,17 @@ "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=le/model_id=tg_precip_lm?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, "5": { - "type": "application/x-parquet", - "title": "Database Access for Daily Net_ecosystem_exchange", - "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=nee/model_id=tg_precip_lm?endpoint_override=sdsc.osn.xsede.org", - "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=nee/model_id=tg_precip_lm?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" - }, - "6": { "type": "application/x-parquet", "title": "Database Access for Daily Red_chromatic_coordinate", "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_precip_lm?endpoint_override=sdsc.osn.xsede.org", "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_precip_lm?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, + "6": { + "type": "application/x-parquet", + "title": "Database Access for Daily Net_ecosystem_exchange", + "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=nee/model_id=tg_precip_lm?endpoint_override=sdsc.osn.xsede.org", + "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=nee/model_id=tg_precip_lm?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + }, "7": { "type": "application/x-parquet", "title": "Database Access for Daily Dissolved_oxygen", diff --git a/catalog/scores/models/model_items/tg_precip_lm_all_sites.json b/catalog/scores/models/model_items/tg_precip_lm_all_sites.json index c692674cc5..0f679ef486 100644 --- a/catalog/scores/models/model_items/tg_precip_lm_all_sites.json +++ b/catalog/scores/models/model_items/tg_precip_lm_all_sites.json @@ -63,27 +63,30 @@ [-78.1395, 38.8929], [-76.56, 38.8901], [-119.7323, 37.1088], + [-82.0084, 29.676], + [-87.7982, 32.5415], + [-89.4737, 46.2097], + [-84.4374, 31.1854], + [-89.7048, 45.9983], + [-99.1139, 47.1591], + [-99.2531, 47.1298], + [-82.0177, 29.6878], [-88.1589, 31.8534], [-149.6106, 68.6307], [-84.2793, 35.9574], [-105.9154, 39.8914], [-102.4471, 39.7582], - [-82.0084, 29.676], [-119.2575, 37.0597], [-110.5871, 44.9501], [-96.6242, 34.4442], - [-87.7982, 32.5415], [-147.504, 65.1532], [-105.5442, 40.035], - [-89.4737, 46.2097], [-66.9868, 18.1135], - [-84.4374, 31.1854], [-66.7987, 18.1741], [-72.3295, 42.4719], [-96.6038, 39.1051], [-83.5038, 35.6904], [-77.9832, 39.0956], - [-89.7048, 45.9983], [-121.9338, 45.7908], [-87.4077, 32.9604], [-96.443, 38.9459], @@ -91,16 +94,13 @@ [-149.143, 68.6698], [-78.1473, 38.8943], [-97.7823, 33.3785], - [-99.1139, 47.1591], - [-99.2531, 47.1298], [-111.7979, 40.7839], - [-82.0177, 29.6878], [-111.5081, 33.751], [-119.0274, 36.9559] ] }, "properties": { - "description": "\nmodel info: NA\n\nSites: SOAP, SRER, STEI, STER, TALL, TEAK, TOOL, TREE, UKFS, UNDE, WOOD, WREF, YELL, ABBY, BARR, BART, BLAN, BONA, CLBJ, CPER, DCFS, DEJU, DELA, DSNY, GRSM, GUAN, HARV, HEAL, JERC, JORN, KONA, KONZ, LAJA, LENO, MLBS, MOAB, NIWO, NOGP, OAES, ONAQ, ORNL, OSBS, PUUM, RMNP, SCBI, SERC, SJER, TOMB, TOOK, WALK, WLOU, ARIK, BARC, BIGC, BLDE, BLUE, BLWA, CARI, COMO, CRAM, CUPE, FLNT, GUIL, HOPB, KING, LECO, LEWI, LIRO, MART, MAYF, MCDI, MCRA, OKSR, POSE, PRIN, PRLA, PRPO, REDB, SUGG, SYCA, TECR\n\nVariables: Daily Net_ecosystem_exchange, Daily Dissolved_oxygen, Daily Red_chromatic_coordinate, Daily latent_heat_flux, Daily Chlorophyll_a, Daily Green_chromatic_coordinate, Daily Water_temperature, Weekly beetle_community_abundance, Weekly beetle_community_richness, Weekly Amblyomma_americanum_population", + "description": "\nmodel info: NA\n\nSites: SOAP, SRER, STEI, STER, TALL, TEAK, TOOL, TREE, UKFS, UNDE, WOOD, WREF, YELL, ABBY, BARR, BART, BLAN, BONA, CLBJ, CPER, DCFS, DEJU, DELA, DSNY, GRSM, GUAN, HARV, HEAL, JERC, JORN, KONA, KONZ, LAJA, LENO, MLBS, MOAB, NIWO, NOGP, OAES, ONAQ, ORNL, OSBS, PUUM, RMNP, SCBI, SERC, SJER, BARC, BLWA, CRAM, FLNT, LIRO, PRLA, PRPO, SUGG, TOMB, TOOK, WALK, WLOU, ARIK, BIGC, BLDE, BLUE, CARI, COMO, CUPE, GUIL, HOPB, KING, LECO, LEWI, MART, MAYF, MCDI, MCRA, OKSR, POSE, PRIN, REDB, SYCA, TECR\n\nVariables: Daily Net_ecosystem_exchange, Daily latent_heat_flux, Daily Chlorophyll_a, Daily Green_chromatic_coordinate, Daily Dissolved_oxygen, Daily Red_chromatic_coordinate, Daily Water_temperature, Weekly beetle_community_abundance, Weekly beetle_community_richness, Weekly Amblyomma_americanum_population", "start_datetime": "2023-11-14", "end_datetime": "2024-01-09", "providers": [ @@ -126,11 +126,11 @@ "Forecasting", "neon4cast", "Daily Net_ecosystem_exchange", - "Daily Dissolved_oxygen", - "Daily Red_chromatic_coordinate", "Daily latent_heat_flux", "Daily Chlorophyll_a", "Daily Green_chromatic_coordinate", + "Daily Dissolved_oxygen", + "Daily Red_chromatic_coordinate", "Daily Water_temperature", "Weekly beetle_community_abundance", "Weekly beetle_community_richness", @@ -292,35 +292,35 @@ "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=nee/model_id=tg_precip_lm_all_sites?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, "4": { - "type": "application/x-parquet", - "title": "Database Access for Daily Dissolved_oxygen", - "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=tg_precip_lm_all_sites?endpoint_override=sdsc.osn.xsede.org", - "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=tg_precip_lm_all_sites?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" - }, - "5": { - "type": "application/x-parquet", - "title": "Database Access for Daily Red_chromatic_coordinate", - "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_precip_lm_all_sites?endpoint_override=sdsc.osn.xsede.org", - "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_precip_lm_all_sites?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" - }, - "6": { "type": "application/x-parquet", "title": "Database Access for Daily latent_heat_flux", "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=le/model_id=tg_precip_lm_all_sites?endpoint_override=sdsc.osn.xsede.org", "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=le/model_id=tg_precip_lm_all_sites?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, - "7": { + "5": { "type": "application/x-parquet", "title": "Database Access for Daily Chlorophyll_a", "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=chla/model_id=tg_precip_lm_all_sites?endpoint_override=sdsc.osn.xsede.org", "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=chla/model_id=tg_precip_lm_all_sites?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, - "8": { + "6": { "type": "application/x-parquet", "title": "Database Access for Daily Green_chromatic_coordinate", "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=gcc_90/model_id=tg_precip_lm_all_sites?endpoint_override=sdsc.osn.xsede.org", "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=gcc_90/model_id=tg_precip_lm_all_sites?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, + "7": { + "type": "application/x-parquet", + "title": "Database Access for Daily Dissolved_oxygen", + "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=tg_precip_lm_all_sites?endpoint_override=sdsc.osn.xsede.org", + "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=tg_precip_lm_all_sites?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + }, + "8": { + "type": "application/x-parquet", + "title": "Database Access for Daily Red_chromatic_coordinate", + "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_precip_lm_all_sites?endpoint_override=sdsc.osn.xsede.org", + "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_precip_lm_all_sites?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + }, "9": { "type": "application/x-parquet", "title": "Database Access for Daily Water_temperature", diff --git a/catalog/scores/models/model_items/tg_randfor.json b/catalog/scores/models/model_items/tg_randfor.json index 56acf4f53c..a933cfc749 100644 --- a/catalog/scores/models/model_items/tg_randfor.json +++ b/catalog/scores/models/model_items/tg_randfor.json @@ -47,22 +47,6 @@ [-99.2413, 47.1282], [-121.9519, 45.8205], [-110.5391, 44.9535], - [-122.3303, 45.7624], - [-156.6194, 71.2824], - [-71.2874, 44.0639], - [-78.0418, 39.0337], - [-147.5026, 65.154], - [-97.57, 33.4012], - [-104.7456, 40.8155], - [-99.1066, 47.1617], - [-145.7514, 63.8811], - [-87.8039, 32.5417], - [-81.4362, 28.1251], - [-83.5019, 35.689], - [-66.8687, 17.9696], - [-72.1727, 42.5369], - [-149.2133, 63.8758], - [-84.4686, 31.1948], [-102.4471, 39.7582], [-82.0084, 29.676], [-119.2575, 37.0597], @@ -93,14 +77,30 @@ [-82.0177, 29.6878], [-111.5081, 33.751], [-119.0274, 36.9559], - [-88.1589, 31.8534], + [-122.3303, 45.7624], + [-156.6194, 71.2824], + [-71.2874, 44.0639], + [-78.0418, 39.0337], + [-147.5026, 65.154], + [-97.57, 33.4012], + [-104.7456, 40.8155], + [-99.1066, 47.1617], + [-145.7514, 63.8811], + [-87.8039, 32.5417], + [-81.4362, 28.1251], + [-83.5019, 35.689], + [-66.8687, 17.9696], + [-72.1727, 42.5369], + [-149.2133, 63.8758], + [-84.4686, 31.1948], [-149.6106, 68.6307], [-84.2793, 35.9574], - [-105.9154, 39.8914] + [-105.9154, 39.8914], + [-88.1589, 31.8534] ] }, "properties": { - "description": "\nmodel info: NA\n\nSites: JORN, KONA, KONZ, LAJA, LENO, MLBS, MOAB, NIWO, NOGP, OAES, ONAQ, ORNL, OSBS, PUUM, RMNP, SCBI, SERC, SJER, SOAP, SRER, STEI, STER, TALL, TEAK, TOOL, TREE, UKFS, UNDE, WOOD, WREF, YELL, ABBY, BARR, BART, BLAN, BONA, CLBJ, CPER, DCFS, DEJU, DELA, DSNY, GRSM, GUAN, HARV, HEAL, JERC, ARIK, BARC, BIGC, BLDE, BLUE, BLWA, CARI, COMO, CRAM, CUPE, FLNT, GUIL, HOPB, KING, LECO, LEWI, LIRO, MART, MAYF, MCDI, MCRA, OKSR, POSE, PRIN, PRLA, PRPO, REDB, SUGG, SYCA, TECR, TOMB, TOOK, WALK, WLOU\n\nVariables: Daily latent_heat_flux, Daily Green_chromatic_coordinate, Daily Dissolved_oxygen, Daily Red_chromatic_coordinate, Daily Net_ecosystem_exchange, Daily Water_temperature, Daily Chlorophyll_a, Weekly beetle_community_abundance, Weekly beetle_community_richness, Weekly Amblyomma_americanum_population", + "description": "\nmodel info: NA\n\nSites: JORN, KONA, KONZ, LAJA, LENO, MLBS, MOAB, NIWO, NOGP, OAES, ONAQ, ORNL, OSBS, PUUM, RMNP, SCBI, SERC, SJER, SOAP, SRER, STEI, STER, TALL, TEAK, TOOL, TREE, UKFS, UNDE, WOOD, WREF, YELL, ARIK, BARC, BIGC, BLDE, BLUE, BLWA, CARI, COMO, CRAM, CUPE, FLNT, GUIL, HOPB, KING, LECO, LEWI, LIRO, MART, MAYF, MCDI, MCRA, OKSR, POSE, PRIN, PRLA, PRPO, REDB, SUGG, SYCA, TECR, ABBY, BARR, BART, BLAN, BONA, CLBJ, CPER, DCFS, DEJU, DELA, DSNY, GRSM, GUAN, HARV, HEAL, JERC, TOOK, WALK, WLOU, TOMB\n\nVariables: Daily latent_heat_flux, Daily Dissolved_oxygen, Daily Green_chromatic_coordinate, Daily Net_ecosystem_exchange, Daily Red_chromatic_coordinate, Daily Water_temperature, Daily Chlorophyll_a, Weekly beetle_community_abundance, Weekly beetle_community_richness, Weekly Amblyomma_americanum_population", "start_datetime": "2023-11-14", "end_datetime": "2024-01-08", "providers": [ @@ -126,10 +126,10 @@ "Forecasting", "neon4cast", "Daily latent_heat_flux", - "Daily Green_chromatic_coordinate", "Daily Dissolved_oxygen", - "Daily Red_chromatic_coordinate", + "Daily Green_chromatic_coordinate", "Daily Net_ecosystem_exchange", + "Daily Red_chromatic_coordinate", "Daily Water_temperature", "Daily Chlorophyll_a", "Weekly beetle_community_abundance", @@ -292,29 +292,29 @@ "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=le/model_id=tg_randfor?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, "4": { - "type": "application/x-parquet", - "title": "Database Access for Daily Green_chromatic_coordinate", - "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=gcc_90/model_id=tg_randfor?endpoint_override=sdsc.osn.xsede.org", - "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=gcc_90/model_id=tg_randfor?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" - }, - "5": { "type": "application/x-parquet", "title": "Database Access for Daily Dissolved_oxygen", "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=tg_randfor?endpoint_override=sdsc.osn.xsede.org", "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=tg_randfor?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, - "6": { + "5": { "type": "application/x-parquet", - "title": "Database Access for Daily Red_chromatic_coordinate", - "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_randfor?endpoint_override=sdsc.osn.xsede.org", - "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_randfor?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + "title": "Database Access for Daily Green_chromatic_coordinate", + "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=gcc_90/model_id=tg_randfor?endpoint_override=sdsc.osn.xsede.org", + "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=gcc_90/model_id=tg_randfor?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, - "7": { + "6": { "type": "application/x-parquet", "title": "Database Access for Daily Net_ecosystem_exchange", "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=nee/model_id=tg_randfor?endpoint_override=sdsc.osn.xsede.org", "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=nee/model_id=tg_randfor?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, + "7": { + "type": "application/x-parquet", + "title": "Database Access for Daily Red_chromatic_coordinate", + "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_randfor?endpoint_override=sdsc.osn.xsede.org", + "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_randfor?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + }, "8": { "type": "application/x-parquet", "title": "Database Access for Daily Water_temperature", diff --git a/catalog/scores/models/model_items/tg_randfor_all_sites.json b/catalog/scores/models/model_items/tg_randfor_all_sites.json index c4bb98fa4f..03284cb1e4 100644 --- a/catalog/scores/models/model_items/tg_randfor_all_sites.json +++ b/catalog/scores/models/model_items/tg_randfor_all_sites.json @@ -16,14 +16,6 @@ "geometry": { "type": "MultiPoint", "coordinates": [ - [-102.4471, 39.7582], - [-82.0084, 29.676], - [-119.2575, 37.0597], - [-110.5871, 44.9501], - [-96.6242, 34.4442], - [-87.7982, 32.5415], - [-147.504, 65.1532], - [-105.5442, 40.035], [-89.4737, 46.2097], [-66.9868, 18.1135], [-84.4374, 31.1854], @@ -50,6 +42,14 @@ [-149.6106, 68.6307], [-84.2793, 35.9574], [-105.9154, 39.8914], + [-102.4471, 39.7582], + [-82.0084, 29.676], + [-119.2575, 37.0597], + [-110.5871, 44.9501], + [-96.6242, 34.4442], + [-87.7982, 32.5415], + [-147.504, 65.1532], + [-105.5442, 40.035], [-122.3303, 45.7624], [-156.6194, 71.2824], [-71.2874, 44.0639], diff --git a/catalog/scores/models/model_items/tg_tbats.json b/catalog/scores/models/model_items/tg_tbats.json index abc79fe8ef..7868d519bf 100644 --- a/catalog/scores/models/model_items/tg_tbats.json +++ b/catalog/scores/models/model_items/tg_tbats.json @@ -63,23 +63,28 @@ [-99.2413, 47.1282], [-121.9519, 45.8205], [-110.5391, 44.9535], - [-102.4471, 39.7582], [-82.0084, 29.676], + [-87.7982, 32.5415], + [-89.4737, 46.2097], + [-84.4374, 31.1854], + [-89.7048, 45.9983], + [-99.1139, 47.1591], + [-99.2531, 47.1298], + [-82.0177, 29.6878], + [-88.1589, 31.8534], + [-149.6106, 68.6307], + [-102.4471, 39.7582], [-119.2575, 37.0597], [-110.5871, 44.9501], [-96.6242, 34.4442], - [-87.7982, 32.5415], [-147.504, 65.1532], [-105.5442, 40.035], - [-89.4737, 46.2097], [-66.9868, 18.1135], - [-84.4374, 31.1854], [-66.7987, 18.1741], [-72.3295, 42.4719], [-96.6038, 39.1051], [-83.5038, 35.6904], [-77.9832, 39.0956], - [-89.7048, 45.9983], [-121.9338, 45.7908], [-87.4077, 32.9604], [-96.443, 38.9459], @@ -87,20 +92,15 @@ [-149.143, 68.6698], [-78.1473, 38.8943], [-97.7823, 33.3785], - [-99.1139, 47.1591], - [-99.2531, 47.1298], [-111.7979, 40.7839], - [-82.0177, 29.6878], [-111.5081, 33.751], [-119.0274, 36.9559], - [-88.1589, 31.8534], - [-149.6106, 68.6307], [-84.2793, 35.9574], [-105.9154, 39.8914] ] }, "properties": { - "description": "\nmodel info: NA\n\nSites: ABBY, BARR, BART, BLAN, BONA, CLBJ, CPER, DCFS, DEJU, DELA, DSNY, GRSM, GUAN, HARV, HEAL, JERC, JORN, KONA, KONZ, LAJA, LENO, MLBS, MOAB, NIWO, NOGP, OAES, ONAQ, ORNL, OSBS, PUUM, RMNP, SCBI, SERC, SJER, SOAP, SRER, STEI, STER, TALL, TEAK, TOOL, TREE, UKFS, UNDE, WOOD, WREF, YELL, ARIK, BARC, BIGC, BLDE, BLUE, BLWA, CARI, COMO, CRAM, CUPE, FLNT, GUIL, HOPB, KING, LECO, LEWI, LIRO, MART, MAYF, MCDI, MCRA, OKSR, POSE, PRIN, PRLA, PRPO, REDB, SUGG, SYCA, TECR, TOMB, TOOK, WALK, WLOU\n\nVariables: Daily Net_ecosystem_exchange, Daily Dissolved_oxygen, Daily Red_chromatic_coordinate, Daily latent_heat_flux, Daily Chlorophyll_a, Daily Green_chromatic_coordinate, Daily Water_temperature, Weekly Amblyomma_americanum_population, Weekly beetle_community_abundance, Weekly beetle_community_richness", + "description": "\nmodel info: NA\n\nSites: ABBY, BARR, BART, BLAN, BONA, CLBJ, CPER, DCFS, DEJU, DELA, DSNY, GRSM, GUAN, HARV, HEAL, JERC, JORN, KONA, KONZ, LAJA, LENO, MLBS, MOAB, NIWO, NOGP, OAES, ONAQ, ORNL, OSBS, PUUM, RMNP, SCBI, SERC, SJER, SOAP, SRER, STEI, STER, TALL, TEAK, TOOL, TREE, UKFS, UNDE, WOOD, WREF, YELL, BARC, BLWA, CRAM, FLNT, LIRO, PRLA, PRPO, SUGG, TOMB, TOOK, ARIK, BIGC, BLDE, BLUE, CARI, COMO, CUPE, GUIL, HOPB, KING, LECO, LEWI, MART, MAYF, MCDI, MCRA, OKSR, POSE, PRIN, REDB, SYCA, TECR, WALK, WLOU\n\nVariables: Daily latent_heat_flux, Daily Net_ecosystem_exchange, Daily Chlorophyll_a, Daily Green_chromatic_coordinate, Daily Dissolved_oxygen, Daily Red_chromatic_coordinate, Daily Water_temperature, Weekly Amblyomma_americanum_population, Weekly beetle_community_abundance, Weekly beetle_community_richness", "start_datetime": "2023-01-01", "end_datetime": "2024-11-25", "providers": [ @@ -125,12 +125,12 @@ "keywords": [ "Forecasting", "neon4cast", - "Daily Net_ecosystem_exchange", - "Daily Dissolved_oxygen", - "Daily Red_chromatic_coordinate", "Daily latent_heat_flux", + "Daily Net_ecosystem_exchange", "Daily Chlorophyll_a", "Daily Green_chromatic_coordinate", + "Daily Dissolved_oxygen", + "Daily Red_chromatic_coordinate", "Daily Water_temperature", "Weekly Amblyomma_americanum_population", "Weekly beetle_community_abundance", @@ -287,39 +287,39 @@ }, "3": { "type": "application/x-parquet", - "title": "Database Access for Daily Net_ecosystem_exchange", - "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=nee/model_id=tg_tbats?endpoint_override=sdsc.osn.xsede.org", - "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=nee/model_id=tg_tbats?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + "title": "Database Access for Daily latent_heat_flux", + "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=le/model_id=tg_tbats?endpoint_override=sdsc.osn.xsede.org", + "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=le/model_id=tg_tbats?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, "4": { "type": "application/x-parquet", - "title": "Database Access for Daily Dissolved_oxygen", - "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=tg_tbats?endpoint_override=sdsc.osn.xsede.org", - "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=tg_tbats?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + "title": "Database Access for Daily Net_ecosystem_exchange", + "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=nee/model_id=tg_tbats?endpoint_override=sdsc.osn.xsede.org", + "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=nee/model_id=tg_tbats?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, "5": { "type": "application/x-parquet", - "title": "Database Access for Daily Red_chromatic_coordinate", - "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_tbats?endpoint_override=sdsc.osn.xsede.org", - "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_tbats?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + "title": "Database Access for Daily Chlorophyll_a", + "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=chla/model_id=tg_tbats?endpoint_override=sdsc.osn.xsede.org", + "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=chla/model_id=tg_tbats?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, "6": { "type": "application/x-parquet", - "title": "Database Access for Daily latent_heat_flux", - "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=le/model_id=tg_tbats?endpoint_override=sdsc.osn.xsede.org", - "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=le/model_id=tg_tbats?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + "title": "Database Access for Daily Green_chromatic_coordinate", + "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=gcc_90/model_id=tg_tbats?endpoint_override=sdsc.osn.xsede.org", + "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=gcc_90/model_id=tg_tbats?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, "7": { "type": "application/x-parquet", - "title": "Database Access for Daily Chlorophyll_a", - "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=chla/model_id=tg_tbats?endpoint_override=sdsc.osn.xsede.org", - "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=chla/model_id=tg_tbats?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + "title": "Database Access for Daily Dissolved_oxygen", + "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=tg_tbats?endpoint_override=sdsc.osn.xsede.org", + "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=tg_tbats?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, "8": { "type": "application/x-parquet", - "title": "Database Access for Daily Green_chromatic_coordinate", - "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=gcc_90/model_id=tg_tbats?endpoint_override=sdsc.osn.xsede.org", - "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=gcc_90/model_id=tg_tbats?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + "title": "Database Access for Daily Red_chromatic_coordinate", + "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_tbats?endpoint_override=sdsc.osn.xsede.org", + "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_tbats?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, "9": { "type": "application/x-parquet", diff --git a/catalog/scores/models/model_items/tg_temp_lm.json b/catalog/scores/models/model_items/tg_temp_lm.json index 2398ad4194..5c0e6187bc 100644 --- a/catalog/scores/models/model_items/tg_temp_lm.json +++ b/catalog/scores/models/model_items/tg_temp_lm.json @@ -16,6 +16,35 @@ "geometry": { "type": "MultiPoint", "coordinates": [ + [-102.4471, 39.7582], + [-82.0084, 29.676], + [-119.2575, 37.0597], + [-110.5871, 44.9501], + [-96.6242, 34.4442], + [-87.7982, 32.5415], + [-147.504, 65.1532], + [-105.5442, 40.035], + [-89.4737, 46.2097], + [-66.9868, 18.1135], + [-84.4374, 31.1854], + [-66.7987, 18.1741], + [-72.3295, 42.4719], + [-96.6038, 39.1051], + [-83.5038, 35.6904], + [-77.9832, 39.0956], + [-89.7048, 45.9983], + [-121.9338, 45.7908], + [-87.4077, 32.9604], + [-96.443, 38.9459], + [-122.1655, 44.2596], + [-149.143, 68.6698], + [-78.1473, 38.8943], + [-97.7823, 33.3785], + [-99.1139, 47.1591], + [-99.2531, 47.1298], + [-111.7979, 40.7839], + [-82.0177, 29.6878], + [-111.5081, 33.751], [-122.3303, 45.7624], [-156.6194, 71.2824], [-71.2874, 44.0639], @@ -48,35 +77,6 @@ [-155.3173, 19.5531], [-105.546, 40.2759], [-78.1395, 38.8929], - [-102.4471, 39.7582], - [-82.0084, 29.676], - [-119.2575, 37.0597], - [-110.5871, 44.9501], - [-96.6242, 34.4442], - [-87.7982, 32.5415], - [-147.504, 65.1532], - [-105.5442, 40.035], - [-89.4737, 46.2097], - [-66.9868, 18.1135], - [-84.4374, 31.1854], - [-66.7987, 18.1741], - [-72.3295, 42.4719], - [-96.6038, 39.1051], - [-83.5038, 35.6904], - [-77.9832, 39.0956], - [-89.7048, 45.9983], - [-121.9338, 45.7908], - [-87.4077, 32.9604], - [-96.443, 38.9459], - [-122.1655, 44.2596], - [-149.143, 68.6698], - [-78.1473, 38.8943], - [-97.7823, 33.3785], - [-99.1139, 47.1591], - [-99.2531, 47.1298], - [-111.7979, 40.7839], - [-82.0177, 29.6878], - [-111.5081, 33.751], [-119.0274, 36.9559], [-88.1589, 31.8534], [-149.6106, 68.6307], @@ -100,7 +100,7 @@ ] }, "properties": { - "description": "\nmodel info: NA\n\nSites: ABBY, BARR, BART, BLAN, BONA, CLBJ, CPER, DCFS, DEJU, DELA, DSNY, GRSM, GUAN, HARV, HEAL, JERC, JORN, KONA, KONZ, LAJA, LENO, MLBS, MOAB, NIWO, NOGP, OAES, ONAQ, ORNL, OSBS, PUUM, RMNP, SCBI, ARIK, BARC, BIGC, BLDE, BLUE, BLWA, CARI, COMO, CRAM, CUPE, FLNT, GUIL, HOPB, KING, LECO, LEWI, LIRO, MART, MAYF, MCDI, MCRA, OKSR, POSE, PRIN, PRLA, PRPO, REDB, SUGG, SYCA, TECR, TOMB, TOOK, WALK, WLOU, SERC, SJER, SOAP, SRER, STEI, STER, TALL, TEAK, TOOL, TREE, UKFS, UNDE, WOOD, WREF, YELL\n\nVariables: Daily Green_chromatic_coordinate, Daily Dissolved_oxygen, Daily Red_chromatic_coordinate, Daily Water_temperature, Daily Chlorophyll_a, Daily latent_heat_flux, Daily Net_ecosystem_exchange, Weekly beetle_community_abundance, Weekly beetle_community_richness, Weekly Amblyomma_americanum_population", + "description": "\nmodel info: NA\n\nSites: ARIK, BARC, BIGC, BLDE, BLUE, BLWA, CARI, COMO, CRAM, CUPE, FLNT, GUIL, HOPB, KING, LECO, LEWI, LIRO, MART, MAYF, MCDI, MCRA, OKSR, POSE, PRIN, PRLA, PRPO, REDB, SUGG, SYCA, ABBY, BARR, BART, BLAN, BONA, CLBJ, CPER, DCFS, DEJU, DELA, DSNY, GRSM, GUAN, HARV, HEAL, JERC, JORN, KONA, KONZ, LAJA, LENO, MLBS, MOAB, NIWO, NOGP, OAES, ONAQ, ORNL, OSBS, PUUM, RMNP, SCBI, TECR, TOMB, TOOK, WALK, WLOU, SERC, SJER, SOAP, SRER, STEI, STER, TALL, TEAK, TOOL, TREE, UKFS, UNDE, WOOD, WREF, YELL\n\nVariables: Daily Dissolved_oxygen, Daily Green_chromatic_coordinate, Daily Red_chromatic_coordinate, Daily Water_temperature, Daily Chlorophyll_a, Daily Net_ecosystem_exchange, Daily latent_heat_flux, Weekly beetle_community_abundance, Weekly beetle_community_richness, Weekly Amblyomma_americanum_population", "start_datetime": "2023-11-14", "end_datetime": "2024-01-09", "providers": [ @@ -125,13 +125,13 @@ "keywords": [ "Forecasting", "neon4cast", - "Daily Green_chromatic_coordinate", "Daily Dissolved_oxygen", + "Daily Green_chromatic_coordinate", "Daily Red_chromatic_coordinate", "Daily Water_temperature", "Daily Chlorophyll_a", - "Daily latent_heat_flux", "Daily Net_ecosystem_exchange", + "Daily latent_heat_flux", "Weekly beetle_community_abundance", "Weekly beetle_community_richness", "Weekly Amblyomma_americanum_population" @@ -286,17 +286,17 @@ "description": "The link to the model code provided by the model submission team" }, "3": { - "type": "application/x-parquet", - "title": "Database Access for Daily Green_chromatic_coordinate", - "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=gcc_90/model_id=tg_temp_lm?endpoint_override=sdsc.osn.xsede.org", - "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=gcc_90/model_id=tg_temp_lm?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" - }, - "4": { "type": "application/x-parquet", "title": "Database Access for Daily Dissolved_oxygen", "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=tg_temp_lm?endpoint_override=sdsc.osn.xsede.org", "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=tg_temp_lm?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, + "4": { + "type": "application/x-parquet", + "title": "Database Access for Daily Green_chromatic_coordinate", + "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=gcc_90/model_id=tg_temp_lm?endpoint_override=sdsc.osn.xsede.org", + "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=gcc_90/model_id=tg_temp_lm?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + }, "5": { "type": "application/x-parquet", "title": "Database Access for Daily Red_chromatic_coordinate", @@ -316,17 +316,17 @@ "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=chla/model_id=tg_temp_lm?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, "8": { - "type": "application/x-parquet", - "title": "Database Access for Daily latent_heat_flux", - "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=le/model_id=tg_temp_lm?endpoint_override=sdsc.osn.xsede.org", - "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=le/model_id=tg_temp_lm?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" - }, - "9": { "type": "application/x-parquet", "title": "Database Access for Daily Net_ecosystem_exchange", "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=nee/model_id=tg_temp_lm?endpoint_override=sdsc.osn.xsede.org", "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=nee/model_id=tg_temp_lm?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, + "9": { + "type": "application/x-parquet", + "title": "Database Access for Daily latent_heat_flux", + "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=le/model_id=tg_temp_lm?endpoint_override=sdsc.osn.xsede.org", + "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=le/model_id=tg_temp_lm?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + }, "10": { "type": "application/x-parquet", "title": "Database Access for Weekly beetle_community_abundance", diff --git a/catalog/scores/models/model_items/tg_temp_lm_all_sites.json b/catalog/scores/models/model_items/tg_temp_lm_all_sites.json index ab8fc5ef22..174e5c29b0 100644 --- a/catalog/scores/models/model_items/tg_temp_lm_all_sites.json +++ b/catalog/scores/models/model_items/tg_temp_lm_all_sites.json @@ -16,6 +16,40 @@ "geometry": { "type": "MultiPoint", "coordinates": [ + [-149.6106, 68.6307], + [-84.2793, 35.9574], + [-105.9154, 39.8914], + [-102.4471, 39.7582], + [-82.0084, 29.676], + [-119.2575, 37.0597], + [-110.5871, 44.9501], + [-96.6242, 34.4442], + [-87.7982, 32.5415], + [-147.504, 65.1532], + [-105.5442, 40.035], + [-89.4737, 46.2097], + [-66.9868, 18.1135], + [-84.4374, 31.1854], + [-66.7987, 18.1741], + [-72.3295, 42.4719], + [-96.6038, 39.1051], + [-83.5038, 35.6904], + [-77.9832, 39.0956], + [-89.7048, 45.9983], + [-121.9338, 45.7908], + [-87.4077, 32.9604], + [-96.443, 38.9459], + [-122.1655, 44.2596], + [-149.143, 68.6698], + [-78.1473, 38.8943], + [-97.7823, 33.3785], + [-99.1139, 47.1591], + [-99.2531, 47.1298], + [-111.7979, 40.7839], + [-82.0177, 29.6878], + [-111.5081, 33.751], + [-119.0274, 36.9559], + [-88.1589, 31.8534], [-122.3303, 45.7624], [-156.6194, 71.2824], [-71.2874, 44.0639], @@ -62,45 +96,11 @@ [-89.5373, 46.2339], [-99.2413, 47.1282], [-121.9519, 45.8205], - [-110.5391, 44.9535], - [-82.0084, 29.676], - [-87.7982, 32.5415], - [-89.4737, 46.2097], - [-84.4374, 31.1854], - [-89.7048, 45.9983], - [-99.1139, 47.1591], - [-99.2531, 47.1298], - [-82.0177, 29.6878], - [-88.1589, 31.8534], - [-149.6106, 68.6307], - [-84.2793, 35.9574], - [-105.9154, 39.8914], - [-102.4471, 39.7582], - [-119.2575, 37.0597], - [-110.5871, 44.9501], - [-96.6242, 34.4442], - [-147.504, 65.1532], - [-105.5442, 40.035], - [-66.9868, 18.1135], - [-66.7987, 18.1741], - [-72.3295, 42.4719], - [-96.6038, 39.1051], - [-83.5038, 35.6904], - [-77.9832, 39.0956], - [-121.9338, 45.7908], - [-87.4077, 32.9604], - [-96.443, 38.9459], - [-122.1655, 44.2596], - [-149.143, 68.6698], - [-78.1473, 38.8943], - [-97.7823, 33.3785], - [-111.7979, 40.7839], - [-111.5081, 33.751], - [-119.0274, 36.9559] + [-110.5391, 44.9535] ] }, "properties": { - "description": "\nmodel info: NA\n\nSites: ABBY, BARR, BART, BLAN, BONA, CLBJ, CPER, DCFS, DEJU, DELA, DSNY, GRSM, GUAN, HARV, HEAL, JERC, JORN, KONA, KONZ, LAJA, LENO, MLBS, MOAB, NIWO, NOGP, OAES, ONAQ, ORNL, OSBS, PUUM, RMNP, SCBI, SERC, SJER, SOAP, SRER, STEI, STER, TALL, TEAK, TOOL, TREE, UKFS, UNDE, WOOD, WREF, YELL, BARC, BLWA, CRAM, FLNT, LIRO, PRLA, PRPO, SUGG, TOMB, TOOK, WALK, WLOU, ARIK, BIGC, BLDE, BLUE, CARI, COMO, CUPE, GUIL, HOPB, KING, LECO, LEWI, MART, MAYF, MCDI, MCRA, OKSR, POSE, PRIN, REDB, SYCA, TECR\n\nVariables: Daily Red_chromatic_coordinate, Daily Green_chromatic_coordinate, Daily latent_heat_flux, Daily Chlorophyll_a, Daily Dissolved_oxygen, Daily Net_ecosystem_exchange, Daily Water_temperature, Weekly beetle_community_abundance, Weekly beetle_community_richness, Weekly Amblyomma_americanum_population", + "description": "\nmodel info: NA\n\nSites: TOOK, WALK, WLOU, ARIK, BARC, BIGC, BLDE, BLUE, BLWA, CARI, COMO, CRAM, CUPE, FLNT, GUIL, HOPB, KING, LECO, LEWI, LIRO, MART, MAYF, MCDI, MCRA, OKSR, POSE, PRIN, PRLA, PRPO, REDB, SUGG, SYCA, TECR, TOMB, ABBY, BARR, BART, BLAN, BONA, CLBJ, CPER, DCFS, DEJU, DELA, DSNY, GRSM, GUAN, HARV, HEAL, JERC, JORN, KONA, KONZ, LAJA, LENO, MLBS, MOAB, NIWO, NOGP, OAES, ONAQ, ORNL, OSBS, PUUM, RMNP, SCBI, SERC, SJER, SOAP, SRER, STEI, STER, TALL, TEAK, TOOL, TREE, UKFS, UNDE, WOOD, WREF, YELL\n\nVariables: Daily Dissolved_oxygen, Daily Green_chromatic_coordinate, Daily latent_heat_flux, Daily Chlorophyll_a, Daily Red_chromatic_coordinate, Daily Net_ecosystem_exchange, Daily Water_temperature, Weekly beetle_community_abundance, Weekly beetle_community_richness, Weekly Amblyomma_americanum_population", "start_datetime": "2023-11-14", "end_datetime": "2024-01-09", "providers": [ @@ -125,11 +125,11 @@ "keywords": [ "Forecasting", "neon4cast", - "Daily Red_chromatic_coordinate", + "Daily Dissolved_oxygen", "Daily Green_chromatic_coordinate", "Daily latent_heat_flux", "Daily Chlorophyll_a", - "Daily Dissolved_oxygen", + "Daily Red_chromatic_coordinate", "Daily Net_ecosystem_exchange", "Daily Water_temperature", "Weekly beetle_community_abundance", @@ -287,9 +287,9 @@ }, "3": { "type": "application/x-parquet", - "title": "Database Access for Daily Red_chromatic_coordinate", - "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_temp_lm_all_sites?endpoint_override=sdsc.osn.xsede.org", - "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_temp_lm_all_sites?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + "title": "Database Access for Daily Dissolved_oxygen", + "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=tg_temp_lm_all_sites?endpoint_override=sdsc.osn.xsede.org", + "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=tg_temp_lm_all_sites?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, "4": { "type": "application/x-parquet", @@ -311,9 +311,9 @@ }, "7": { "type": "application/x-parquet", - "title": "Database Access for Daily Dissolved_oxygen", - "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=tg_temp_lm_all_sites?endpoint_override=sdsc.osn.xsede.org", - "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=oxygen/model_id=tg_temp_lm_all_sites?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + "title": "Database Access for Daily Red_chromatic_coordinate", + "href": "s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_temp_lm_all_sites?endpoint_override=sdsc.osn.xsede.org", + "description": "Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/challenges/scores/parquet/duration=P1D/variable=rcc_90/model_id=tg_temp_lm_all_sites?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, "8": { "type": "application/x-parquet",