diff --git a/catalog/noaa_forecasts/Pseudo/collection.json b/catalog/noaa_forecasts/Pseudo/collection.json index 740db0544c..20f254a45a 100644 --- a/catalog/noaa_forecasts/Pseudo/collection.json +++ b/catalog/noaa_forecasts/Pseudo/collection.json @@ -52,22 +52,22 @@ "temporal": { "interval": [ [ - "2020-09-25T00:00:00Z", - "2024-02-11T00:00:00Z" + "2020-09-26T00:00:00Z", + "2024-02-20T00:00:00Z" ] ] } }, "table:columns": [ { - "name": "site_id", - "type": "string", - "description": "For forecasts that are not on a spatial grid, use of a site dimension that maps to a more detailed geometry (points, polygons, etc.) is allowable. In general this would be documented in the external metadata (e.g., alook-up table that provides lon and lat)" + "name": "parameter", + "type": "double", + "description": "ensemble member or distribution parameter" }, { - "name": "prediction", - "type": "double", - "description": "predicted value for variable" + "name": "datetime", + "type": "timestamp[us, tz=UTC]", + "description": "datetime of the forecasted value (ISO 8601)" }, { "name": "variable", @@ -75,19 +75,9 @@ "description": "name of forecasted variable" }, { - "name": "height", - "type": "string", - "description": "variable height" - }, - { - "name": "horizon", + "name": "prediction", "type": "double", - "description": "number of days in forecast" - }, - { - "name": "parameter", - "type": "int32", - "description": "ensemble member or distribution parameter" + "description": "predicted value for variable" }, { "name": "family", @@ -96,39 +86,24 @@ }, { "name": "reference_datetime", - "type": "timestamp[us, tz=UTC]", + "type": "string", "description": "datetime that the forecast was initiated (horizon = 0)" }, { - "name": "forecast_valid", + "name": "site_id", "type": "string", - "description": "date when forecast is valid" - }, - { - "name": "datetime", - "type": "timestamp[us, tz=UTC]", - "description": "datetime of the forecasted value (ISO 8601)" - }, - { - "name": "longitude", - "type": "double", - "description": "forecast site longitude" - }, - { - "name": "latitude", - "type": "double", - "description": "forecast site latitude" + "description": "For forecasts that are not on a spatial grid, use of a site dimension that maps to a more detailed geometry (points, polygons, etc.) is allowable. In general this would be documented in the external metadata (e.g., alook-up table that provides lon and lat)" } ], "assets": { "data": { - "href": "\"s3://anonymous@drivers/noaa/gefs-v12-reprocess/pseudo/parquet/0?endpoint_override=s3.flare-forecast.org\"", + "href": "\"s3://anonymous@bio230014-bucket01/neon4cast-drivers/noaa/gefs-v12pseudo/parquet/0?endpoint_override=sdsc.osn.xsede.org\"", "type": "application/x-parquet", "title": "Database Access", "roles": [ "data" ], - "description": "Use `arrow` for remote access to the database. This R code will return results for NEON forecasts associated with the forecasting challenge.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(\"s3://anonymous@drivers/noaa/gefs-v12-reprocess/pseudo/parquet/0?endpoint_override=s3.flare-forecast.org\")\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + "description": "Use `arrow` for remote access to the database. This R code will return results for NEON forecasts associated with the forecasting challenge.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(\"s3://anonymous@bio230014-bucket01/neon4cast-drivers/noaa/gefs-v12pseudo/parquet/0?endpoint_override=sdsc.osn.xsede.org\")\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, "thumbnail": { "href": "https://raw.githubusercontent.com/eco4cast/neon4cast-ci/main/catalog/thumbnail_plots/neon_wetland.jpg", diff --git a/catalog/noaa_forecasts/Stage1-stats/collection.json b/catalog/noaa_forecasts/Stage1-stats/collection.json index 8082271ebd..312adfc9a2 100644 --- a/catalog/noaa_forecasts/Stage1-stats/collection.json +++ b/catalog/noaa_forecasts/Stage1-stats/collection.json @@ -52,22 +52,22 @@ "temporal": { "interval": [ [ - "2020-09-25T00:00:00Z", - "2024-02-11T00:00:00Z" + "2020-09-26T00:00:00Z", + "2024-02-20T00:00:00Z" ] ] } }, "table:columns": [ { - "name": "site_id", - "type": "string", - "description": "For forecasts that are not on a spatial grid, use of a site dimension that maps to a more detailed geometry (points, polygons, etc.) is allowable. In general this would be documented in the external metadata (e.g., alook-up table that provides lon and lat)" + "name": "parameter", + "type": "double", + "description": "ensemble member or distribution parameter" }, { - "name": "prediction", - "type": "double", - "description": "predicted value for variable" + "name": "datetime", + "type": "timestamp[us, tz=UTC]", + "description": "datetime of the forecasted value (ISO 8601)" }, { "name": "variable", @@ -75,19 +75,9 @@ "description": "name of forecasted variable" }, { - "name": "height", - "type": "string", - "description": "variable height" - }, - { - "name": "horizon", + "name": "prediction", "type": "double", - "description": "number of days in forecast" - }, - { - "name": "parameter", - "type": "int32", - "description": "ensemble member or distribution parameter" + "description": "predicted value for variable" }, { "name": "family", @@ -96,39 +86,24 @@ }, { "name": "reference_datetime", - "type": "timestamp[us, tz=UTC]", + "type": "string", "description": "datetime that the forecast was initiated (horizon = 0)" }, { - "name": "forecast_valid", + "name": "site_id", "type": "string", - "description": "date when forecast is valid" - }, - { - "name": "datetime", - "type": "timestamp[us, tz=UTC]", - "description": "datetime of the forecasted value (ISO 8601)" - }, - { - "name": "longitude", - "type": "double", - "description": "forecast site longitude" - }, - { - "name": "latitude", - "type": "double", - "description": "forecast site latitude" + "description": "For forecasts that are not on a spatial grid, use of a site dimension that maps to a more detailed geometry (points, polygons, etc.) is allowable. In general this would be documented in the external metadata (e.g., alook-up table that provides lon and lat)" } ], "assets": { "data": { - "href": "\"s3://anonymous@drivers/noaa/gefs-v12-reprocess/stage1-stats/parquet/0?endpoint_override=s3.flare-forecast.org\"", + "href": "\"s3://anonymous@bio230014-bucket01/neon4cast-drivers/noaa/gefs-v12stage1-stats/parquet/0?endpoint_override=sdsc.osn.xsede.org\"", "type": "application/x-parquet", "title": "Database Access", "roles": [ "data" ], - "description": "Use `arrow` for remote access to the database. This R code will return results for NEON forecasts associated with the forecasting challenge.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(\"s3://anonymous@drivers/noaa/gefs-v12-reprocess/stage1-stats/parquet/0?endpoint_override=s3.flare-forecast.org\")\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + "description": "Use `arrow` for remote access to the database. This R code will return results for NEON forecasts associated with the forecasting challenge.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(\"s3://anonymous@bio230014-bucket01/neon4cast-drivers/noaa/gefs-v12stage1-stats/parquet/0?endpoint_override=sdsc.osn.xsede.org\")\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, "thumbnail": { "href": "https://raw.githubusercontent.com/eco4cast/neon4cast-ci/main/catalog/thumbnail_plots/neon_wetland.jpg", diff --git a/catalog/noaa_forecasts/Stage1/collection.json b/catalog/noaa_forecasts/Stage1/collection.json index 9ca561ff68..9f8aaa3fb7 100644 --- a/catalog/noaa_forecasts/Stage1/collection.json +++ b/catalog/noaa_forecasts/Stage1/collection.json @@ -52,22 +52,22 @@ "temporal": { "interval": [ [ - "2020-09-25T00:00:00Z", - "2024-02-11T00:00:00Z" + "2020-09-26T00:00:00Z", + "2024-02-20T00:00:00Z" ] ] } }, "table:columns": [ { - "name": "site_id", - "type": "string", - "description": "For forecasts that are not on a spatial grid, use of a site dimension that maps to a more detailed geometry (points, polygons, etc.) is allowable. In general this would be documented in the external metadata (e.g., alook-up table that provides lon and lat)" + "name": "parameter", + "type": "double", + "description": "ensemble member or distribution parameter" }, { - "name": "prediction", - "type": "double", - "description": "predicted value for variable" + "name": "datetime", + "type": "timestamp[us, tz=UTC]", + "description": "datetime of the forecasted value (ISO 8601)" }, { "name": "variable", @@ -75,19 +75,9 @@ "description": "name of forecasted variable" }, { - "name": "height", - "type": "string", - "description": "variable height" - }, - { - "name": "horizon", + "name": "prediction", "type": "double", - "description": "number of days in forecast" - }, - { - "name": "parameter", - "type": "int32", - "description": "ensemble member or distribution parameter" + "description": "predicted value for variable" }, { "name": "family", @@ -96,39 +86,24 @@ }, { "name": "reference_datetime", - "type": "timestamp[us, tz=UTC]", + "type": "string", "description": "datetime that the forecast was initiated (horizon = 0)" }, { - "name": "forecast_valid", + "name": "site_id", "type": "string", - "description": "date when forecast is valid" - }, - { - "name": "datetime", - "type": "timestamp[us, tz=UTC]", - "description": "datetime of the forecasted value (ISO 8601)" - }, - { - "name": "longitude", - "type": "double", - "description": "forecast site longitude" - }, - { - "name": "latitude", - "type": "double", - "description": "forecast site latitude" + "description": "For forecasts that are not on a spatial grid, use of a site dimension that maps to a more detailed geometry (points, polygons, etc.) is allowable. In general this would be documented in the external metadata (e.g., alook-up table that provides lon and lat)" } ], "assets": { "data": { - "href": "\"s3://anonymous@drivers/noaa/gefs-v12-reprocess/stage1/parquet/0?endpoint_override=s3.flare-forecast.org\"", + "href": "\"s3://anonymous@bio230014-bucket01/neon4cast-drivers/noaa/gefs-v12stage1/parquet/0?endpoint_override=sdsc.osn.xsede.org\"", "type": "application/x-parquet", "title": "Database Access", "roles": [ "data" ], - "description": "Use `arrow` for remote access to the database. This R code will return results for NEON forecasts associated with the forecasting challenge.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(\"s3://anonymous@drivers/noaa/gefs-v12-reprocess/stage1/parquet/0?endpoint_override=s3.flare-forecast.org\")\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + "description": "Use `arrow` for remote access to the database. This R code will return results for NEON forecasts associated with the forecasting challenge.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(\"s3://anonymous@bio230014-bucket01/neon4cast-drivers/noaa/gefs-v12stage1/parquet/0?endpoint_override=sdsc.osn.xsede.org\")\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, "thumbnail": { "href": "https://raw.githubusercontent.com/eco4cast/neon4cast-ci/main/catalog/thumbnail_plots/neon_wetland.jpg", diff --git a/catalog/noaa_forecasts/Stage2/collection.json b/catalog/noaa_forecasts/Stage2/collection.json index a2e181c0d3..d8812c499c 100644 --- a/catalog/noaa_forecasts/Stage2/collection.json +++ b/catalog/noaa_forecasts/Stage2/collection.json @@ -52,22 +52,22 @@ "temporal": { "interval": [ [ - "2020-09-25T00:00:00Z", - "2024-02-11T00:00:00Z" + "2020-09-26T00:00:00Z", + "2024-02-20T00:00:00Z" ] ] } }, "table:columns": [ { - "name": "site_id", - "type": "string", - "description": "For forecasts that are not on a spatial grid, use of a site dimension that maps to a more detailed geometry (points, polygons, etc.) is allowable. In general this would be documented in the external metadata (e.g., alook-up table that provides lon and lat)" + "name": "parameter", + "type": "double", + "description": "ensemble member or distribution parameter" }, { - "name": "prediction", - "type": "double", - "description": "predicted value for variable" + "name": "datetime", + "type": "timestamp[us, tz=UTC]", + "description": "datetime of the forecasted value (ISO 8601)" }, { "name": "variable", @@ -75,19 +75,9 @@ "description": "name of forecasted variable" }, { - "name": "height", - "type": "string", - "description": "variable height" - }, - { - "name": "horizon", + "name": "prediction", "type": "double", - "description": "number of days in forecast" - }, - { - "name": "parameter", - "type": "int32", - "description": "ensemble member or distribution parameter" + "description": "predicted value for variable" }, { "name": "family", @@ -96,39 +86,24 @@ }, { "name": "reference_datetime", - "type": "timestamp[us, tz=UTC]", + "type": "string", "description": "datetime that the forecast was initiated (horizon = 0)" }, { - "name": "forecast_valid", + "name": "site_id", "type": "string", - "description": "date when forecast is valid" - }, - { - "name": "datetime", - "type": "timestamp[us, tz=UTC]", - "description": "datetime of the forecasted value (ISO 8601)" - }, - { - "name": "longitude", - "type": "double", - "description": "forecast site longitude" - }, - { - "name": "latitude", - "type": "double", - "description": "forecast site latitude" + "description": "For forecasts that are not on a spatial grid, use of a site dimension that maps to a more detailed geometry (points, polygons, etc.) is allowable. In general this would be documented in the external metadata (e.g., alook-up table that provides lon and lat)" } ], "assets": { "data": { - "href": "\"s3://anonymous@drivers/noaa/gefs-v12-reprocess/stage2/parquet/0?endpoint_override=s3.flare-forecast.org\"", + "href": "\"s3://anonymous@bio230014-bucket01/neon4cast-drivers/noaa/gefs-v12stage2/parquet/0?endpoint_override=sdsc.osn.xsede.org\"", "type": "application/x-parquet", "title": "Database Access", "roles": [ "data" ], - "description": "Use `arrow` for remote access to the database. This R code will return results for NEON forecasts associated with the forecasting challenge.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(\"s3://anonymous@drivers/noaa/gefs-v12-reprocess/stage2/parquet/0?endpoint_override=s3.flare-forecast.org\")\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + "description": "Use `arrow` for remote access to the database. This R code will return results for NEON forecasts associated with the forecasting challenge.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(\"s3://anonymous@bio230014-bucket01/neon4cast-drivers/noaa/gefs-v12stage2/parquet/0?endpoint_override=sdsc.osn.xsede.org\")\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, "thumbnail": { "href": "https://raw.githubusercontent.com/eco4cast/neon4cast-ci/main/catalog/thumbnail_plots/neon_wetland.jpg", diff --git a/catalog/noaa_forecasts/Stage3/collection.json b/catalog/noaa_forecasts/Stage3/collection.json index 97d8c3ce86..f428d47ad7 100644 --- a/catalog/noaa_forecasts/Stage3/collection.json +++ b/catalog/noaa_forecasts/Stage3/collection.json @@ -52,22 +52,22 @@ "temporal": { "interval": [ [ - "2020-09-25T00:00:00Z", - "2024-02-11T00:00:00Z" + "2020-09-26T00:00:00Z", + "2024-02-20T00:00:00Z" ] ] } }, "table:columns": [ { - "name": "site_id", - "type": "string", - "description": "For forecasts that are not on a spatial grid, use of a site dimension that maps to a more detailed geometry (points, polygons, etc.) is allowable. In general this would be documented in the external metadata (e.g., alook-up table that provides lon and lat)" + "name": "parameter", + "type": "double", + "description": "ensemble member or distribution parameter" }, { - "name": "prediction", - "type": "double", - "description": "predicted value for variable" + "name": "datetime", + "type": "timestamp[us, tz=UTC]", + "description": "datetime of the forecasted value (ISO 8601)" }, { "name": "variable", @@ -75,19 +75,9 @@ "description": "name of forecasted variable" }, { - "name": "height", - "type": "string", - "description": "variable height" - }, - { - "name": "horizon", + "name": "prediction", "type": "double", - "description": "number of days in forecast" - }, - { - "name": "parameter", - "type": "int32", - "description": "ensemble member or distribution parameter" + "description": "predicted value for variable" }, { "name": "family", @@ -96,39 +86,24 @@ }, { "name": "reference_datetime", - "type": "timestamp[us, tz=UTC]", + "type": "string", "description": "datetime that the forecast was initiated (horizon = 0)" }, { - "name": "forecast_valid", + "name": "site_id", "type": "string", - "description": "date when forecast is valid" - }, - { - "name": "datetime", - "type": "timestamp[us, tz=UTC]", - "description": "datetime of the forecasted value (ISO 8601)" - }, - { - "name": "longitude", - "type": "double", - "description": "forecast site longitude" - }, - { - "name": "latitude", - "type": "double", - "description": "forecast site latitude" + "description": "For forecasts that are not on a spatial grid, use of a site dimension that maps to a more detailed geometry (points, polygons, etc.) is allowable. In general this would be documented in the external metadata (e.g., alook-up table that provides lon and lat)" } ], "assets": { "data": { - "href": "\"s3://anonymous@drivers/noaa/gefs-v12-reprocess/stage3/parquet/0?endpoint_override=s3.flare-forecast.org\"", + "href": "\"s3://anonymous@bio230014-bucket01/neon4cast-drivers/noaa/gefs-v12stage3/parquet/0?endpoint_override=sdsc.osn.xsede.org\"", "type": "application/x-parquet", "title": "Database Access", "roles": [ "data" ], - "description": "Use `arrow` for remote access to the database. This R code will return results for NEON forecasts associated with the forecasting challenge.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(\"s3://anonymous@drivers/noaa/gefs-v12-reprocess/stage3/parquet/0?endpoint_override=s3.flare-forecast.org\")\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + "description": "Use `arrow` for remote access to the database. This R code will return results for NEON forecasts associated with the forecasting challenge.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(\"s3://anonymous@bio230014-bucket01/neon4cast-drivers/noaa/gefs-v12stage3/parquet/0?endpoint_override=sdsc.osn.xsede.org\")\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, "thumbnail": { "href": "https://raw.githubusercontent.com/eco4cast/neon4cast-ci/main/catalog/thumbnail_plots/neon_wetland.jpg", diff --git a/catalog/noaa_forecasts/collection.json b/catalog/noaa_forecasts/collection.json index 4c75c30829..1a02716723 100644 --- a/catalog/noaa_forecasts/collection.json +++ b/catalog/noaa_forecasts/collection.json @@ -87,22 +87,22 @@ "temporal": { "interval": [ [ - "2020-09-25T00:00:00Z", - "2024-02-11T00:00:00Z" + "2020-09-26T00:00:00Z", + "2024-02-20T00:00:00Z" ] ] } }, "table:columns": [ { - "name": "site_id", - "type": "string", - "description": "For forecasts that are not on a spatial grid, use of a site dimension that maps to a more detailed geometry (points, polygons, etc.) is allowable. In general this would be documented in the external metadata (e.g., alook-up table that provides lon and lat)" + "name": "parameter", + "type": "double", + "description": "ensemble member or distribution parameter" }, { - "name": "prediction", - "type": "double", - "description": "predicted value for variable" + "name": "datetime", + "type": "timestamp[us, tz=UTC]", + "description": "datetime of the forecasted value (ISO 8601)" }, { "name": "variable", @@ -110,19 +110,9 @@ "description": "name of forecasted variable" }, { - "name": "height", - "type": "string", - "description": "variable height" - }, - { - "name": "horizon", + "name": "prediction", "type": "double", - "description": "number of days in forecast" - }, - { - "name": "parameter", - "type": "int32", - "description": "ensemble member or distribution parameter" + "description": "predicted value for variable" }, { "name": "family", @@ -131,39 +121,24 @@ }, { "name": "reference_datetime", - "type": "timestamp[us, tz=UTC]", + "type": "string", "description": "datetime that the forecast was initiated (horizon = 0)" }, { - "name": "forecast_valid", + "name": "site_id", "type": "string", - "description": "date when forecast is valid" - }, - { - "name": "datetime", - "type": "timestamp[us, tz=UTC]", - "description": "datetime of the forecasted value (ISO 8601)" - }, - { - "name": "longitude", - "type": "double", - "description": "forecast site longitude" - }, - { - "name": "latitude", - "type": "double", - "description": "forecast site latitude" + "description": "For forecasts that are not on a spatial grid, use of a site dimension that maps to a more detailed geometry (points, polygons, etc.) is allowable. In general this would be documented in the external metadata (e.g., alook-up table that provides lon and lat)" } ], "assets": { "data": { - "href": "s3://anonymous@drivers/noaa/gefs-v12-reprocess/?endpoint_override=s3.flare-forecast.org", + "href": "s3://anonymous@bio230014-bucket01/neon4cast-drivers/noaa/gefs-v12?endpoint_override=sdsc.osn.xsede.org", "type": "application/x-parquet", "title": "Database Access", "roles": [ "data" ], - "description": "Use `arrow` for remote access to the database. This R code will return results for the Forecasting Challenge.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@drivers/noaa/gefs-v12-reprocess/?endpoint_override=s3.flare-forecast.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" + "description": "Use `arrow` for remote access to the database. This R code will return results for the Forecasting Challenge.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(s3://anonymous@bio230014-bucket01/neon4cast-drivers/noaa/gefs-v12?endpoint_override=sdsc.osn.xsede.org)\ndf <- all_results |> dplyr::collect()\n\n```\n \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n" }, "thumbnail": { "href": "https://raw.githubusercontent.com/eco4cast/neon4cast-ci/main/catalog/thumbnail_plots/neon_wetland.jpg",