Total forecasts submitted to the NEON Challenge
+323
+Most recent data for model training
+2023-11-04 +Number of years of data for model training
+10.35
+Number of variables being forecasted
+10
+diff --git a/index.html b/index.html index 3091c2600b..125e8f2ed3 100644 --- a/index.html +++ b/index.html @@ -82,6 +82,12 @@ background-size: cover; } + + + + + + @@ -178,6 +184,92 @@
We are using forecasts to compare the predictability of different ecosystem variables, in different ecosystem conditions to identify the fundamental predictability of freshwater ecosystems.
Total forecasts submitted to the NEON Challenge
+323
+Most recent data for model training
+2023-11-04 +Number of years of data for model training
+10.35
+Number of variables being forecasted
+10
+
datetime
: forecast timestamp. Format %Y-%m-%d %H:%M:%S
with UTC as the time zone. Forecasts submitted with a %Y-%m-%d
format will be converted to a full datetime assuming UTC mid-night.
reference_datetime
: The start of the forecast; this should be 0 times steps in the future. There should only be one value of reference_datetime
in the file. Format is %Y-%m-%d %H:%M:%S
with UTC as the time zone. Forecasts submitted with a %Y-%m-%d
format will be converted to a full datetime assuming UTC mid-night.
duration
: the time-step of the forecast. Use the value of P1D
for a daily forecast, P1W
for a weekly forecast, and PT30M
for 30 minute forecast. This value should match the duration of the target variable that you are forecasting. Formatted as ISO 8601 duration
site_id
: code for site (bvre
, fcre
, or tubr
)
site_id
: code for NEON site.
family
name of the probability distribution that is described by the parameter values in the parameter column (see list below for accepted distribution). An ensemble forecast as a family of ensemble
. See note below about family
parameter
the parameters for the distribution (see note below about parameter column) or the number of the ensemble member. For example the parameters for normal are mu
and sigma
.
variable
: standardized variable name
Here is an example of a forecast that uses a normal distribution:
<- readr::read_csv("https://renc.osn.xsede.org/bio230121-bucket01/vera4cast/forecasts/raw/T20231001231345_daily-2023-10-01-climatology.csv.gz", show_col_types = FALSE)
+ df <- readr::read_csv("https://sdsc.osn.xsede.org/bio230014-bucket01/challenges/forecasts/raw/T20231102190926_aquatics-2023-10-19-climatology.csv.gz", show_col_types = FALSE)
df ::glimpse(df) dplyr
-Rows: 288
-Columns: 11
+Rows: 4,456
+Columns: 8
$ model_id <chr> "climatology", "climatology", "climatology", "clima…
-$ datetime <date> 2023-10-02, 2023-10-02, 2023-10-02, 2023-10-02, 20…
-$ reference_datetime <date> 2023-10-01, 2023-10-01, 2023-10-01, 2023-10-01, 20…
-$ site_id <chr> "bvre", "bvre", "bvre", "bvre", "bvre", "bvre", "bv…
-$ variable <chr> "Chla_ugL_mean", "Chla_ugL_mean", "Temp_C_mean", "T…
+$ datetime <date> 2023-10-20, 2023-10-20, 2023-10-20, 2023-10-20, 20…
+$ reference_datetime <date> 2023-10-19, 2023-10-19, 2023-10-19, 2023-10-19, 20…
+$ site_id <chr> "ARIK", "ARIK", "ARIK", "ARIK", "ARIK", "ARIK", "AR…
$ family <chr> "normal", "normal", "normal", "normal", "normal", "…
$ parameter <chr> "mu", "sigma", "mu", "sigma", "mu", "sigma", "mu", …
-$ prediction <dbl> 10.041987, 2.587292, 18.331126, 2.531732, 9.541139,…
-$ depth_m <dbl> 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1…
-$ project_id <chr> "vera4cast", "vera4cast", "vera4cast", "vera4cast",…
-$ duration <chr> "P1D", "P1D", "P1D", "P1D", "P1D", "P1D", "P1D", "P…
+$ variable <chr> "oxygen", "oxygen", "temperature", "temperature", "…
+$ prediction <dbl> 4.542862, 1.448393, 8.070854, 1.330059, 4.194895, 1…
For an ensemble (or sample) forecast, the family
column uses the word ensemble
to designate that it is a ensemble forecast and the parameter column is the ensemble member number (1
, 2
, 3
…)
<- readr::read_csv("https://renc.osn.xsede.org/bio230121-bucket01/vera4cast/forecasts/raw/T20231001231348_daily-2023-10-01-persistenceRW.csv.gz", show_col_types = FALSE)
+ df <- readr::read_csv("https://sdsc.osn.xsede.org/bio230014-bucket01/challenges/forecasts/raw/T20231102190926_aquatics-2023-10-19-persistenceRW.csv.gz", show_col_types = FALSE)
df ::glimpse(df) dplyr
-Rows: 28,800
-Columns: 11
+Rows: 530,400
+Columns: 8
$ model_id <chr> "persistenceRW", "persistenceRW", "persistenceRW", …
-$ datetime <dttm> 2023-10-02, 2023-10-03, 2023-10-04, 2023-10-05, 20…
-$ reference_datetime <dttm> 2023-10-01, 2023-10-01, 2023-10-01, 2023-10-01, 20…
-$ site_id <chr> "bvre", "bvre", "bvre", "bvre", "bvre", "bvre", "bv…
+$ datetime <date> 2023-10-20, 2023-10-21, 2023-10-22, 2023-10-23, 20…
+$ reference_datetime <date> 2023-10-19, 2023-10-19, 2023-10-19, 2023-10-19, 20…
+$ site_id <chr> "BARC", "BARC", "BARC", "BARC", "BARC", "BARC", "BA…
$ family <chr> "ensemble", "ensemble", "ensemble", "ensemble", "en…
$ parameter <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
-$ variable <chr> "Chla_ugL_mean", "Chla_ugL_mean", "Chla_ugL_mean", …
-$ prediction <dbl> 10.59539, 13.04463, 13.86989, 13.81281, 14.09787, 1…
-$ depth_m <dbl> 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1…
-$ project_id <chr> "vera4cast", "vera4cast", "vera4cast", "vera4cast",…
-$ duration <chr> "P1D", "P1D", "P1D", "P1D", "P1D", "P1D", "P1D", "P…
+$ variable <chr> "chla", "chla", "chla", "chla", "chla", "chla", "ch…
+$ prediction <dbl> 3.7956520, 4.1800958, 3.2470058, 3.4550993, 3.48348…
Individual forecast files can be uploaded any time.
-Teams will submit their forecast csv files through an R function.
+Teams will submit their forecast csv files through an R function. The csv file can only contain one unique model_id
and one unique project_id
.
The function is available using the following code
::install_github("eco4cast/neon4cast") remotes
library(tidyverse)
The targets were specifically chosen to include ecosystem, community, and population dynamics. Targets are available at all relative NEON sites. If you are interested in forecasting a single site, we recommend the following focal sites.
+Insert short description
<- "https://sdsc.osn.xsede.org/bio230014-bucket01/challenges/targets/project_id=neon4cast/duration=P1D/terrestrial_daily-targets.csv.gz" url
<- "https://sdsc.osn.xsede.org/bio230014-bucket01/challenges/targets/project_id=neon4cast/duration=P1D/terrestrial_daily-targets.csv.gz" url
<- read_csv(url, show_col_types = FALSE) terrestrial_targets
<- read_csv(url, show_col_types = FALSE) terrestrial_targets
glimpse(terrestrial_targets)
glimpse(terrestrial_targets)
Rows: 111,244
Columns: 6
@@ -246,11 +252,18 @@ Terrestrial fluxes
+
+
+
+
+
+
variable
duration
Description
+horizon
@@ -258,38 +271,41 @@ Terrestrial fluxes
le
P1D
daily mean latent heat flux (W/m2)
+30 days
nee
P1D
daily mean Net ecosystem exchange (gC/m2/day)
+30 days
-|>
- terrestrial_targets filter(site_id %in% c("HARV", "OSBS")) |>
- ggplot(aes(x = datetime, y = observation)) +
- geom_point() +
- facet_grid(variable~site_id, scales = "free_y") +
- theme_bw()
+|>
+ terrestrial_targets filter(site_id %in% c("HARV", "OSBS")) |>
+ ggplot(aes(x = datetime, y = observation)) +
+ geom_point() +
+ facet_grid(variable~site_id, scales = "free_y") +
+ theme_bw()
+Learn more at: https://projects.ecoforecast.org/neon4cast-docs/Terrestrial.html
Aquatics
-<- "https://sdsc.osn.xsede.org/bio230014-bucket01/challenges/targets/project_id=neon4cast/duration=P1D/aquatics-targets.csv.gz" url
+<- "https://sdsc.osn.xsede.org/bio230014-bucket01/challenges/targets/project_id=neon4cast/duration=P1D/aquatics-targets.csv.gz" url
-<- read_csv(url, show_col_types = FALSE) aquatics_targets
+<- read_csv(url, show_col_types = FALSE) aquatics_targets
-glimpse(aquatics_targets)
+glimpse(aquatics_targets)
Rows: 58,082
Columns: 6
@@ -305,15 +321,17 @@ Aquatics
-
-
-
+
+
+
+
variable
duration
Description
+horizon
@@ -321,28 +339,31 @@ Aquatics
temperature
P1D
Surface Mean Daily Water Temperature (Celsius)
+30 days
chla
P1D
daily mean Chlorophyll-a (ug/L)
+30 days
oxygen
P1D
Surface Mean Daily Dissolved Oxygen Concentration (mgL)
+30 days
-|>
- aquatics_targets filter(site_id %in% c("BARC", "CRAM")) |>
- ggplot(aes(x = datetime, y = observation)) +
- geom_point() +
- facet_grid(variable~site_id, scales = "free_y") +
- theme_bw()
+|>
+ aquatics_targets filter(site_id %in% c("BARC", "CRAM")) |>
+ ggplot(aes(x = datetime, y = observation)) +
+ geom_point() +
+ facet_grid(variable~site_id, scales = "free_y") +
+ theme_bw()
Warning: Removed 219 rows containing missing values (`geom_point()`).
@@ -350,17 +371,18 @@ Aquatics
+Learn more at: https://projects.ecoforecast.org/neon4cast-docs/Aquatics.html
Phenology
-<- "https://sdsc.osn.xsede.org/bio230014-bucket01/challenges/targets/project_id=neon4cast/duration=P1D/phenology-targets.csv.gz" url
+<- "https://sdsc.osn.xsede.org/bio230014-bucket01/challenges/targets/project_id=neon4cast/duration=P1D/phenology-targets.csv.gz" url
-<- read_csv(url, show_col_types = FALSE) phenology_targets
+<- read_csv(url, show_col_types = FALSE) phenology_targets
-glimpse(phenology_targets)
+glimpse(phenology_targets)
Rows: 266,678
Columns: 6
@@ -375,35 +397,44 @@ Phenology
+
+
+
+
+
+
variable
duration
Description
+horizon
gcc_90
P1D
-NA
+Green chromatic coordinate is the ratio of the green digital number to the sum of the red, green, blue digital numbers from a digital camera.
+30 days
rcc_90
P1D
-NA
+Red chromatic coordinate is the ratio of the Red digital number to the sum of the red, green, blue digital numbers from a digital camera.
+30 days
-|>
- phenology_targets filter(site_id %in% c("HARV", "OSBS")) |>
- ggplot(aes(x = datetime, y = observation)) +
- geom_point() +
- facet_grid(variable~site_id, scales = "free_y") +
- theme_bw()
+|>
+ phenology_targets filter(site_id %in% c("HARV", "OSBS")) |>
+ ggplot(aes(x = datetime, y = observation)) +
+ geom_point() +
+ facet_grid(variable~site_id, scales = "free_y") +
+ theme_bw()
Warning: Removed 1672 rows containing missing values (`geom_point()`).
@@ -411,17 +442,18 @@ Phenology
+Learn more at: https://projects.ecoforecast.org/neon4cast-docs/Phenology.html
Beetle communities
-<- "https://sdsc.osn.xsede.org/bio230014-bucket01/challenges/targets/project_id=neon4cast/duration=P1W/beetles-targets.csv.gz" url
+<- "https://sdsc.osn.xsede.org/bio230014-bucket01/challenges/targets/project_id=neon4cast/duration=P1W/beetles-targets.csv.gz" url
-<- read_csv(url, show_col_types = FALSE) beetles_targets
+<- read_csv(url, show_col_types = FALSE) beetles_targets
-glimpse(beetles_targets)
+glimpse(beetles_targets)
Rows: 5,280
Columns: 6
@@ -437,15 +469,17 @@ Beetle communities
-
-
+
+
+
variable
duration
Description
+horizon
@@ -453,38 +487,41 @@ Beetle communities
abundance
P1W
Total number of carabid individuals per trap-night, estimated each week of the year at each NEON site
+1 year
richness
P1W
Total number of unique ‘species’ in a sampling bout for each NEON site each week.
+1 year
-|>
- beetles_targets filter(site_id %in% c("HARV", "OSBS")) |>
- ggplot(aes(x = datetime, y = observation)) +
- geom_point() +
- facet_grid(variable~site_id, scales = "free_y") +
- theme_bw()
+|>
+ beetles_targets filter(site_id %in% c("HARV", "OSBS")) |>
+ ggplot(aes(x = datetime, y = observation)) +
+ geom_point() +
+ facet_grid(variable~site_id, scales = "free_y") +
+ theme_bw()
+Learn more at: https://projects.ecoforecast.org/neon4cast-docs/Beetles.html
Tick populations
-<- "https://sdsc.osn.xsede.org/bio230014-bucket01/challenges/targets/project_id=neon4cast/duration=P1W/ticks-targets.csv.gz" url
+<- "https://sdsc.osn.xsede.org/bio230014-bucket01/challenges/targets/project_id=neon4cast/duration=P1W/ticks-targets.csv.gz" url
-<- read_csv(url, show_col_types = FALSE) ticks_targets
+<- read_csv(url, show_col_types = FALSE) ticks_targets
-glimpse(ticks_targets)
+glimpse(ticks_targets)
Rows: 622
Columns: 6
@@ -504,6 +541,7 @@ Tick populations
variable
duration
Description
+horizon
@@ -512,24 +550,26 @@ Tick populations
-|>
- ticks_targets filter(site_id %in% c("BLAN", "OSBS")) |>
- ggplot(aes(x = datetime, y = observation)) +
- geom_point() +
- facet_grid(variable~site_id, scales = "free_y") +
- theme_bw()
+|>
+ ticks_targets filter(site_id %in% c("BLAN", "OSBS")) |>
+ ggplot(aes(x = datetime, y = observation)) +
+ geom_point() +
+ facet_grid(variable~site_id, scales = "free_y") +
+ theme_bw()
+Learn more at: https://projects.ecoforecast.org/neon4cast-docs/Beetles.html
Sites
+The following table lists all the sites in the NEON Ecological Forecasting Challenge along with the “themes” that it is included it.
-<- read_csv("../neon4cast_field_site_metadata.csv", show_col_types = FALSE) |>
- site_list rename(site_id = field_site_id) |>
- select(site_id, field_site_name, terrestrial, aquatics, phenology, ticks, beetles)
+<- read_csv("../neon4cast_field_site_metadata.csv", show_col_types = FALSE) |>
+ site_list rename(site_id = field_site_id) |>
+ select(site_id, field_site_name, terrestrial, aquatics, phenology, ticks, beetles)
@@ -1295,10 +1335,10 @@ Additional variables<
Hourly water temperature
Daily time-step variables measured in the monitored stream (Tunnel Branch; site_id = tubr)
-<- "https://sdsc.osn.xsede.org/bio230014-bucket01/challenges/targets/project_id=neon4cast/duration=PT1H/aquatics-expanded-observations.csv.gz"
- url
-<- read_csv(url, show_col_types = FALSE)
- aquatics_expanded glimpse(aquatics_expanded)
+<- "https://sdsc.osn.xsede.org/bio230014-bucket01/challenges/targets/project_id=neon4cast/duration=PT1H/aquatics-expanded-observations.csv.gz"
+ url
+<- read_csv(url, show_col_types = FALSE)
+ aquatics_expanded glimpse(aquatics_expanded)
Rows: 1,412,364
Columns: 6