-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandom_pattern_distance_test.py
124 lines (99 loc) · 4.49 KB
/
random_pattern_distance_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# -*- coding: utf-8 -*-
"""
Created on Mon Apr 24 11:07:57 2023
@author: Mieszko Ferens
Script to run simulation for evaluating distance metrics of traditional and
Random Shifted Pattern (RSP) CRP subsets.
"""
import argparse
import pandas as pd
from pathlib import Path
import numpy as np
from pypuf.simulation import XORArbiterPUF
from pypuf.io import random_inputs
import scipy as sp
import time
class ChallengeResponseSet():
def __init__(self, n, challenges, responses):
self.challenge_length = n
self.challenges = challenges
self.responses = np.expand_dims(
np.expand_dims(responses,axis=1),axis=1)
def create_shifted_pattern_challenges(n, N, n_patterns, pattern_len, seed=0):
patterns = random_inputs(pattern_len, n_patterns, seed=seed)
challenges = -np.ones(((n-pattern_len+1)*n_patterns,n), dtype=np.int8)
for i in range(n_patterns):
for j in range(n-pattern_len+1):
challenges[i*(n-pattern_len+1)+j, j:j+pattern_len] = patterns[i]
_ , idx = np.unique(challenges, return_index=True, axis=0)
challenges = challenges[np.sort(idx)]
assert N <= len(challenges), (
"Not enough unique CRPs exist due to duplicates. " +
"Tip: You might need to increase the number of patterns")
challenges = challenges[:N]
return challenges
def main():
# Set-up logging
import logging
logging.basicConfig(level=logging.DEBUG)
# Parse arguments
parser = argparse.ArgumentParser()
parser.add_argument("--outdir", type=str, default="./Results/")
parser.add_argument("--seed", type=int, default=0, help="Random seed.")
parser.add_argument("--n-bits", type=int, default=64,
help="Challenge length in bits.")
parser.add_argument("--k", type=int, default=1,
help="The number of parallel APUF in the XOR PUF.")
parser.add_argument("--n-CRPs", type=int, default=100000,
help="Number of CRPs to be generated.")
parser.add_argument("--n-patterns", type=int, default=100000,
help="Number of random patterns to be created.")
parser.add_argument("--pattern-len", type=int, default=16,
help="Random pattern length in bits.")
parser.add_argument("--metric", type=str, default="hamming",
help="The distance metric to be calculated (entropy " +
"or distance metrics from scipy).")
args = parser.parse_args()
assert args.n_CRPs <= args.n_patterns*(args.n_bits-args.pattern_len+1), (
"Not enough patterns. Tip: Increase the number of patterns or " +
"decrease the number of CRPs/pattern lenght.")
# Generate the PUF
puf = XORArbiterPUF(args.n_bits, args.k, args.seed)
# Generate the challenges
challenges = create_shifted_pattern_challenges(
n=args.n_bits, N=args.n_CRPs, n_patterns=args.n_patterns,
pattern_len=args.pattern_len, seed=args.seed)
# Get responses
responses = puf.eval(challenges)
t0 = time.time()
if(args.metric == "entropy"):
# Calculate the entropy of the challenges
challenges = (challenges + 1) != 0
prob = challenges/challenges.sum(axis=1, keepdims=True)
distance = (sp.special.entr(prob).sum(axis=1)/np.log(2)).mean()
else:
# Calculate the fractional Hamming Distance of challenge subset
distance = sp.spatial.distance.pdist(challenges, args.metric).mean()
calc_time = time.time() - t0
# Calculate uniformity of responses
uniformity = responses.mean()
# Log data into csv format
data = pd.DataFrame({"seed": [args.seed],
"n_bits": [args.n_bits],
"k": [args.k],
"n_CRPs": [args.n_CRPs],
"n_patterns": [args.n_patterns],
"pattern_len": [args.pattern_len],
"metric": [args.metric],
"distance": [distance],
"uniformity": [uniformity],
"calc_time": [calc_time]})
filepath = Path(args.outdir + "out_dist_random_pattern_" + str(args.k) +
"XOR.csv")
if(filepath.is_file()):
data.to_csv(filepath, header=False, index=False, mode='a')
else:
filepath.parent.mkdir(parents=True, exist_ok=True)
data.to_csv(filepath, header=True, index=False, mode='a')
if(__name__ == "__main__"):
main()