forked from THUDM/CogVLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweb_demo.py
222 lines (176 loc) · 8.94 KB
/
web_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import gradio as gr
import os, sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from PIL import Image
import base64
import json
import requests
import base64
import hashlib
import torch
import time
import re
import argparse
from sat.model.mixins import CachedAutoregressiveMixin
from sat.mpu import get_model_parallel_world_size
from utils.parser import parse_response
from utils.chat import chat
from models.cogvlm_model import CogVLMModel
from utils.language import llama2_tokenizer, llama2_text_processor_inference
from utils.vision import get_image_processor
DESCRIPTION = '''<h2 style='text-align: center'> <a href="https://github.com/THUDM/CogVLM">CogVLM-17B</a> </h2>'''
NOTES = 'This app is adapted from <a href="https://github.com/THUDM/CogVLM">https://github.com/THUDM/CogVLM</a>. It would be recommended to check out the repo if you want to see the detail of our model.'
MAINTENANCE_NOTICE1 = 'Hint 1: If the app report "Something went wrong, connection error out", please turn off your proxy and retry.<br>Hint 2: If you upload a large size of image like 10MB, it may take some time to upload and process. Please be patient and wait.'
GROUNDING_NOTICE = 'Hint: When you check "Grounding", please use the <a href="https://github.com/THUDM/CogVLM/blob/main/utils/template.py#L344">corresponding prompt</a> or the examples below.'
default_chatbox = [("", "Hi, What do you want to know about this image?")]
model = image_processor = text_processor_infer = None
is_grounding = False
def process_image_without_resize(image_prompt):
image = Image.open(image_prompt)
# print(f"height:{image.height}, width:{image.width}")
timestamp = int(time.time())
file_ext = os.path.splitext(image_prompt)[1]
filename_grounding = f"examples/{timestamp}_grounding{file_ext}"
return image, filename_grounding
def load_model(args):
model, model_args = CogVLMModel.from_pretrained(
args.from_pretrained,
args=argparse.Namespace(
deepspeed=None,
local_rank=0,
rank=0,
world_size=world_size,
model_parallel_size=world_size,
mode='inference',
fp16=args.fp16,
bf16=args.bf16,
skip_init=True,
use_gpu_initialization=True,
device=f'cuda'),
overwrite_args={'model_parallel_size': world_size} if world_size != 1 else {}
)
model = model.eval()
assert world_size == get_model_parallel_world_size(), "world size must equal to model parallel size for cli_demo!"
tokenizer = llama2_tokenizer(args.local_tokenizer, signal_type=args.version)
image_processor = get_image_processor(model_args.eva_args["image_size"][0])
model.add_mixin('auto-regressive', CachedAutoregressiveMixin())
text_processor_infer = llama2_text_processor_inference(tokenizer, args.max_length, model.image_length)
return model, image_processor, text_processor_infer
def post(
input_text,
temperature,
top_p,
top_k,
image_prompt,
result_previous,
hidden_image,
):
result_text = [(ele[0], ele[1]) for ele in result_previous]
for i in range(len(result_text)-1, -1, -1):
if result_text[i][0] == "" or result_text[i][0] == None:
del result_text[i]
print(f"history {result_text}")
global model, image_processor, text_processor_infer, is_grounding
try:
with torch.no_grad():
pil_img, image_path_grounding = process_image_without_resize(image_prompt)
response, _, cache_image = chat(
image_path="",
model=model,
text_processor=text_processor_infer,
img_processor=image_processor,
query=input_text,
history=result_text,
image=pil_img,
max_length=2048,
top_p=top_p,
temperature=temperature,
top_k=top_k,
invalid_slices=text_processor_infer.invalid_slices if hasattr(text_processor_infer, "invalid_slices") else [],
no_prompt=False
)
except Exception as e:
print("error message", e)
result_text.append((input_text, 'Timeout! Please wait a few minutes and retry.'))
return "", result_text, hidden_image
answer = response
if is_grounding:
parse_response(pil_img, answer, image_path_grounding)
new_answer = answer.replace(input_text, "")
result_text.append((input_text, new_answer))
result_text.append((None, (image_path_grounding,)))
else:
result_text.append((input_text, answer))
print(result_text)
print('finished')
return "", result_text, hidden_image
def clear_fn(value):
return "", default_chatbox, None
def clear_fn2(value):
return default_chatbox
def main(args):
global model, image_processor, text_processor_infer, is_grounding
model, image_processor, text_processor_infer = load_model(args)
is_grounding = 'grounding' in args.from_pretrained
gr.close_all()
examples = []
example_ids = list(range(3)) if not is_grounding else list(range(3,6,1))
with open("./examples/example_inputs.jsonl") as f:
for i, line in enumerate(f):
if i not in example_ids: continue
data = json.loads(line)
examples.append(data)
with gr.Blocks(css='style.css') as demo:
gr.Markdown(DESCRIPTION)
gr.Markdown(NOTES)
with gr.Row():
with gr.Column(scale=4.5):
with gr.Group():
input_text = gr.Textbox(label='Input Text', placeholder='Please enter text prompt below and press ENTER.')
with gr.Row():
run_button = gr.Button('Generate')
clear_button = gr.Button('Clear')
image_prompt = gr.Image(type="filepath", label="Image Prompt", value=None)
with gr.Row():
temperature = gr.Slider(maximum=1, value=0.8, minimum=0, label='Temperature')
top_p = gr.Slider(maximum=1, value=0.4, minimum=0, label='Top P')
top_k = gr.Slider(maximum=100, value=10, minimum=1, step=1, label='Top K')
with gr.Column(scale=5.5):
result_text = gr.components.Chatbot(label='Multi-round conversation History', value=[("", "Hi, What do you want to know about this image?")]).style(height=550)
hidden_image_hash = gr.Textbox(visible=False)
gr_examples = gr.Examples(examples=[[example["text"], example["image"]] for example in examples],
inputs=[input_text, image_prompt],
label="Example Inputs (Click to insert an examplet into the input box)",
examples_per_page=6)
gr.Markdown(MAINTENANCE_NOTICE1)
print(gr.__version__)
run_button.click(fn=post,inputs=[input_text, temperature, top_p, top_k, image_prompt, result_text, hidden_image_hash],
outputs=[input_text, result_text, hidden_image_hash])
input_text.submit(fn=post,inputs=[input_text, temperature, top_p, top_k, image_prompt, result_text, hidden_image_hash],
outputs=[input_text, result_text, hidden_image_hash])
clear_button.click(fn=clear_fn, inputs=clear_button, outputs=[input_text, result_text, image_prompt])
image_prompt.upload(fn=clear_fn2, inputs=clear_button, outputs=[result_text])
image_prompt.clear(fn=clear_fn2, inputs=clear_button, outputs=[result_text])
print(gr.__version__)
demo.queue(concurrency_count=10)
demo.launch()
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--max_length", type=int, default=2048, help='max length of the total sequence')
parser.add_argument("--top_p", type=float, default=0.4, help='top p for nucleus sampling')
parser.add_argument("--top_k", type=int, default=1, help='top k for top k sampling')
parser.add_argument("--temperature", type=float, default=.8, help='temperature for sampling')
parser.add_argument("--english", action='store_true', help='only output English')
parser.add_argument("--version", type=str, default="chat", help='version to interact with')
parser.add_argument("--from_pretrained", type=str, default="cogvlm-chat", help='pretrained ckpt')
parser.add_argument("--local_tokenizer", type=str, default="lmsys/vicuna-7b-v1.5", help='tokenizer path')
parser.add_argument("--no_prompt", action='store_true', help='Sometimes there is no prompt in stage 1')
parser.add_argument("--fp16", action="store_true")
parser.add_argument("--bf16", action="store_true")
args = parser.parse_args()
rank = int(os.environ.get('RANK', 0))
world_size = int(os.environ.get('WORLD_SIZE', 1))
parser = CogVLMModel.add_model_specific_args(parser)
args = parser.parse_args()
main(args)