forked from micropython/micropython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lexer.c
948 lines (845 loc) · 33.7 KB
/
lexer.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "py/reader.h"
#include "py/lexer.h"
#include "py/runtime.h"
#if MICROPY_ENABLE_COMPILER
#define TAB_SIZE (8)
// TODO seems that CPython allows NULL byte in the input stream
// don't know if that's intentional or not, but we don't allow it
#define MP_LEXER_EOF ((unichar)MP_READER_EOF)
#define CUR_CHAR(lex) ((lex)->chr0)
static bool is_end(mp_lexer_t *lex) {
return lex->chr0 == MP_LEXER_EOF;
}
static bool is_physical_newline(mp_lexer_t *lex) {
return lex->chr0 == '\n';
}
static bool is_char(mp_lexer_t *lex, byte c) {
return lex->chr0 == c;
}
static bool is_char_or(mp_lexer_t *lex, byte c1, byte c2) {
return lex->chr0 == c1 || lex->chr0 == c2;
}
static bool is_char_or3(mp_lexer_t *lex, byte c1, byte c2, byte c3) {
return lex->chr0 == c1 || lex->chr0 == c2 || lex->chr0 == c3;
}
#if MICROPY_PY_FSTRINGS
static bool is_char_or4(mp_lexer_t *lex, byte c1, byte c2, byte c3, byte c4) {
return lex->chr0 == c1 || lex->chr0 == c2 || lex->chr0 == c3 || lex->chr0 == c4;
}
#endif
static bool is_char_following(mp_lexer_t *lex, byte c) {
return lex->chr1 == c;
}
static bool is_char_following_or(mp_lexer_t *lex, byte c1, byte c2) {
return lex->chr1 == c1 || lex->chr1 == c2;
}
static bool is_char_following_following_or(mp_lexer_t *lex, byte c1, byte c2) {
return lex->chr2 == c1 || lex->chr2 == c2;
}
static bool is_char_and(mp_lexer_t *lex, byte c1, byte c2) {
return lex->chr0 == c1 && lex->chr1 == c2;
}
static bool is_whitespace(mp_lexer_t *lex) {
return unichar_isspace(lex->chr0);
}
static bool is_letter(mp_lexer_t *lex) {
return unichar_isalpha(lex->chr0);
}
static bool is_digit(mp_lexer_t *lex) {
return unichar_isdigit(lex->chr0);
}
static bool is_following_digit(mp_lexer_t *lex) {
return unichar_isdigit(lex->chr1);
}
static bool is_following_base_char(mp_lexer_t *lex) {
const unichar chr1 = lex->chr1 | 0x20;
return chr1 == 'b' || chr1 == 'o' || chr1 == 'x';
}
static bool is_following_odigit(mp_lexer_t *lex) {
return lex->chr1 >= '0' && lex->chr1 <= '7';
}
static bool is_string_or_bytes(mp_lexer_t *lex) {
return is_char_or(lex, '\'', '\"')
#if MICROPY_PY_FSTRINGS
|| (is_char_or4(lex, 'r', 'u', 'b', 'f') && is_char_following_or(lex, '\'', '\"'))
|| (((is_char_and(lex, 'r', 'f') || is_char_and(lex, 'f', 'r'))
&& is_char_following_following_or(lex, '\'', '\"')))
#else
|| (is_char_or3(lex, 'r', 'u', 'b') && is_char_following_or(lex, '\'', '\"'))
#endif
|| ((is_char_and(lex, 'r', 'b') || is_char_and(lex, 'b', 'r'))
&& is_char_following_following_or(lex, '\'', '\"'));
}
// to easily parse utf-8 identifiers we allow any raw byte with high bit set
static bool is_head_of_identifier(mp_lexer_t *lex) {
return is_letter(lex) || lex->chr0 == '_' || lex->chr0 >= 0x80;
}
static bool is_tail_of_identifier(mp_lexer_t *lex) {
return is_head_of_identifier(lex) || is_digit(lex);
}
static void next_char(mp_lexer_t *lex) {
if (lex->chr0 == '\n') {
// a new line
++lex->line;
lex->column = 1;
} else if (lex->chr0 == '\t') {
// a tab
lex->column = (((lex->column - 1 + TAB_SIZE) / TAB_SIZE) * TAB_SIZE) + 1;
} else {
// a character worth one column
++lex->column;
}
// shift the input queue forward
lex->chr0 = lex->chr1;
lex->chr1 = lex->chr2;
// and add the next byte from either the fstring args or the reader
#if MICROPY_PY_FSTRINGS
if (lex->fstring_args_idx) {
// if there are saved chars, then we're currently injecting fstring args
if (lex->fstring_args_idx < lex->fstring_args.len) {
lex->chr2 = lex->fstring_args.buf[lex->fstring_args_idx++];
} else {
// no more fstring arg bytes
lex->chr2 = '\0';
}
if (lex->chr0 == '\0') {
// consumed all fstring data, restore saved input queue
lex->chr0 = lex->chr0_saved;
lex->chr1 = lex->chr1_saved;
lex->chr2 = lex->chr2_saved;
// stop consuming fstring arg data
vstr_reset(&lex->fstring_args);
lex->fstring_args_idx = 0;
}
} else
#endif
{
lex->chr2 = lex->reader.readbyte(lex->reader.data);
}
if (lex->chr1 == '\r') {
// CR is a new line, converted to LF
lex->chr1 = '\n';
if (lex->chr2 == '\n') {
// CR LF is a single new line, throw out the extra LF
lex->chr2 = lex->reader.readbyte(lex->reader.data);
}
}
// check if we need to insert a newline at end of file
if (lex->chr2 == MP_LEXER_EOF && lex->chr1 != MP_LEXER_EOF && lex->chr1 != '\n') {
lex->chr2 = '\n';
}
}
static void indent_push(mp_lexer_t *lex, size_t indent) {
if (lex->num_indent_level >= lex->alloc_indent_level) {
lex->indent_level = m_renew(uint16_t, lex->indent_level, lex->alloc_indent_level, lex->alloc_indent_level + MICROPY_ALLOC_LEXEL_INDENT_INC);
lex->alloc_indent_level += MICROPY_ALLOC_LEXEL_INDENT_INC;
}
lex->indent_level[lex->num_indent_level++] = indent;
}
static size_t indent_top(mp_lexer_t *lex) {
return lex->indent_level[lex->num_indent_level - 1];
}
static void indent_pop(mp_lexer_t *lex) {
lex->num_indent_level -= 1;
}
// some tricky operator encoding:
// <op> = begin with <op>, if this opchar matches then begin here
// e<op> = end with <op>, if this opchar matches then end
// c<op> = continue with <op>, if this opchar matches then continue matching
// this means if the start of two ops are the same then they are equal til the last char
static const char *const tok_enc =
"()[]{},;~" // singles
":e=" // : :=
"<e=c<e=" // < <= << <<=
">e=c>e=" // > >= >> >>=
"*e=c*e=" // * *= ** **=
"+e=" // + +=
"-e=e>" // - -= ->
"&e=" // & &=
"|e=" // | |=
"/e=c/e=" // / /= // //=
"%e=" // % %=
"^e=" // ^ ^=
"@e=" // @ @=
"=e=" // = ==
"!."; // start of special cases: != . ...
static const uint8_t tok_enc_kind[] = {
MP_TOKEN_DEL_PAREN_OPEN, MP_TOKEN_DEL_PAREN_CLOSE,
MP_TOKEN_DEL_BRACKET_OPEN, MP_TOKEN_DEL_BRACKET_CLOSE,
MP_TOKEN_DEL_BRACE_OPEN, MP_TOKEN_DEL_BRACE_CLOSE,
MP_TOKEN_DEL_COMMA, MP_TOKEN_DEL_SEMICOLON, MP_TOKEN_OP_TILDE,
MP_TOKEN_DEL_COLON, MP_TOKEN_OP_ASSIGN,
MP_TOKEN_OP_LESS, MP_TOKEN_OP_LESS_EQUAL, MP_TOKEN_OP_DBL_LESS, MP_TOKEN_DEL_DBL_LESS_EQUAL,
MP_TOKEN_OP_MORE, MP_TOKEN_OP_MORE_EQUAL, MP_TOKEN_OP_DBL_MORE, MP_TOKEN_DEL_DBL_MORE_EQUAL,
MP_TOKEN_OP_STAR, MP_TOKEN_DEL_STAR_EQUAL, MP_TOKEN_OP_DBL_STAR, MP_TOKEN_DEL_DBL_STAR_EQUAL,
MP_TOKEN_OP_PLUS, MP_TOKEN_DEL_PLUS_EQUAL,
MP_TOKEN_OP_MINUS, MP_TOKEN_DEL_MINUS_EQUAL, MP_TOKEN_DEL_MINUS_MORE,
MP_TOKEN_OP_AMPERSAND, MP_TOKEN_DEL_AMPERSAND_EQUAL,
MP_TOKEN_OP_PIPE, MP_TOKEN_DEL_PIPE_EQUAL,
MP_TOKEN_OP_SLASH, MP_TOKEN_DEL_SLASH_EQUAL, MP_TOKEN_OP_DBL_SLASH, MP_TOKEN_DEL_DBL_SLASH_EQUAL,
MP_TOKEN_OP_PERCENT, MP_TOKEN_DEL_PERCENT_EQUAL,
MP_TOKEN_OP_CARET, MP_TOKEN_DEL_CARET_EQUAL,
MP_TOKEN_OP_AT, MP_TOKEN_DEL_AT_EQUAL,
MP_TOKEN_DEL_EQUAL, MP_TOKEN_OP_DBL_EQUAL,
};
// must have the same order as enum in lexer.h
// must be sorted according to strcmp
static const char *const tok_kw[] = {
"False",
"None",
"True",
"__debug__",
"and",
"as",
"assert",
#if MICROPY_PY_ASYNC_AWAIT
"async",
"await",
#endif
"break",
"class",
"continue",
"def",
"del",
"elif",
"else",
"except",
"finally",
"for",
"from",
"global",
"if",
"import",
"in",
"is",
"lambda",
"nonlocal",
"not",
"or",
"pass",
"raise",
"return",
"try",
"while",
"with",
"yield",
};
// This is called with CUR_CHAR() before first hex digit, and should return with
// it pointing to last hex digit
// num_digits must be greater than zero
static bool get_hex(mp_lexer_t *lex, size_t num_digits, mp_uint_t *result) {
mp_uint_t num = 0;
while (num_digits-- != 0) {
next_char(lex);
unichar c = CUR_CHAR(lex);
if (!unichar_isxdigit(c)) {
return false;
}
num = (num << 4) + unichar_xdigit_value(c);
}
*result = num;
return true;
}
static void parse_string_literal(mp_lexer_t *lex, bool is_raw, bool is_fstring) {
// get first quoting character
char quote_char = '\'';
if (is_char(lex, '\"')) {
quote_char = '\"';
}
next_char(lex);
// work out if it's a single or triple quoted literal
size_t num_quotes;
if (is_char_and(lex, quote_char, quote_char)) {
// triple quotes
next_char(lex);
next_char(lex);
num_quotes = 3;
} else {
// single quotes
num_quotes = 1;
}
size_t n_closing = 0;
#if MICROPY_PY_FSTRINGS
if (is_fstring) {
// assume there's going to be interpolation, so prep the injection data
// fstring_args_idx==0 && len(fstring_args)>0 means we're extracting the args.
// only when fstring_args_idx>0 will we consume the arg data
// lex->fstring_args is reset when finished, so at this point there are two cases:
// - lex->fstring_args is empty: start of a new f-string
// - lex->fstring_args is non-empty: concatenation of adjacent f-strings
if (vstr_len(&lex->fstring_args) == 0) {
vstr_add_str(&lex->fstring_args, ".format(");
}
}
#endif
while (!is_end(lex) && (num_quotes > 1 || !is_char(lex, '\n')) && n_closing < num_quotes) {
if (is_char(lex, quote_char)) {
n_closing += 1;
vstr_add_char(&lex->vstr, CUR_CHAR(lex));
} else {
n_closing = 0;
#if MICROPY_PY_FSTRINGS
while (is_fstring && is_char(lex, '{')) {
next_char(lex);
if (is_char(lex, '{')) {
// "{{" is passed through unchanged to be handled by str.format
vstr_add_byte(&lex->vstr, '{');
next_char(lex);
} else {
// wrap each argument in (), e.g.
// f"{a,b,}, {c}" --> "{}".format((a,b), (c),)
vstr_add_byte(&lex->fstring_args, '(');
// remember the start of this argument (if we need it for f'{a=}').
size_t i = lex->fstring_args.len;
// Extract characters inside the { until the bracket level
// is zero and we reach the conversion specifier '!',
// format specifier ':', or closing '}'. The conversion
// and format specifiers are left unchanged in the format
// string to be handled by str.format.
// (MicroPython limitation) note: this is completely
// unaware of Python syntax and will not handle any
// expression containing '}' or ':'. e.g. f'{"}"}' or f'
// {foo({})}'. However, detection of the '!' will
// specifically ensure that it's followed by [rs] and
// then either the format specifier or the closing
// brace. This allows the use of e.g. != in expressions.
unsigned int nested_bracket_level = 0;
while (!is_end(lex) && (nested_bracket_level != 0
|| !(is_char_or(lex, ':', '}')
|| (is_char(lex, '!')
&& is_char_following_or(lex, 'r', 's')
&& is_char_following_following_or(lex, ':', '}'))))
) {
unichar c = CUR_CHAR(lex);
if (c == '[' || c == '{') {
nested_bracket_level += 1;
} else if (c == ']' || c == '}') {
nested_bracket_level -= 1;
}
// like the default case at the end of this function, stay 8-bit clean
vstr_add_byte(&lex->fstring_args, c);
next_char(lex);
}
if (lex->fstring_args.buf[lex->fstring_args.len - 1] == '=') {
// if the last character of the arg was '=', then inject "arg=" before the '{'.
// f'{a=}' --> 'a={}'.format(a)
vstr_add_strn(&lex->vstr, lex->fstring_args.buf + i, lex->fstring_args.len - i);
// remove the trailing '='
lex->fstring_args.len--;
}
// close the paren-wrapped arg to .format().
vstr_add_byte(&lex->fstring_args, ')');
// comma-separate args to .format().
vstr_add_byte(&lex->fstring_args, ',');
}
vstr_add_byte(&lex->vstr, '{');
}
#endif
if (is_char(lex, '\\')) {
next_char(lex);
unichar c = CUR_CHAR(lex);
if (is_raw) {
// raw strings allow escaping of quotes, but the backslash is also emitted
vstr_add_char(&lex->vstr, '\\');
} else {
switch (c) {
// note: "c" can never be MP_LEXER_EOF because next_char
// always inserts a newline at the end of the input stream
case '\n':
c = MP_LEXER_EOF;
break; // backslash escape the newline, just ignore it
case '\\':
break;
case '\'':
break;
case '"':
break;
case 'a':
c = 0x07;
break;
case 'b':
c = 0x08;
break;
case 't':
c = 0x09;
break;
case 'n':
c = 0x0a;
break;
case 'v':
c = 0x0b;
break;
case 'f':
c = 0x0c;
break;
case 'r':
c = 0x0d;
break;
case 'u':
case 'U':
if (lex->tok_kind == MP_TOKEN_BYTES) {
// b'\u1234' == b'\\u1234'
vstr_add_char(&lex->vstr, '\\');
break;
}
// Otherwise fall through.
MP_FALLTHROUGH
case 'x': {
mp_uint_t num = 0;
if (!get_hex(lex, (c == 'x' ? 2 : c == 'u' ? 4 : 8), &num)) {
// not enough hex chars for escape sequence
lex->tok_kind = MP_TOKEN_INVALID;
}
c = num;
break;
}
case 'N':
// Supporting '\N{LATIN SMALL LETTER A}' == 'a' would require keeping the
// entire Unicode name table in the core. As of Unicode 6.3.0, that's nearly
// 3MB of text; even gzip-compressed and with minimal structure, it'll take
// roughly half a meg of storage. This form of Unicode escape may be added
// later on, but it's definitely not a priority right now. -- CJA 20140607
mp_raise_NotImplementedError(MP_ERROR_TEXT("unicode name escapes"));
break;
default:
if (c >= '0' && c <= '7') {
// Octal sequence, 1-3 chars
size_t digits = 3;
mp_uint_t num = c - '0';
while (is_following_odigit(lex) && --digits != 0) {
next_char(lex);
num = num * 8 + (CUR_CHAR(lex) - '0');
}
c = num;
} else {
// unrecognised escape character; CPython lets this through verbatim as '\' and then the character
vstr_add_char(&lex->vstr, '\\');
}
break;
}
}
if (c != MP_LEXER_EOF) {
#if MICROPY_PY_BUILTINS_STR_UNICODE
if (c < 0x110000 && lex->tok_kind == MP_TOKEN_STRING) {
// Valid unicode character in a str object.
vstr_add_char(&lex->vstr, c);
} else if (c < 0x100 && lex->tok_kind == MP_TOKEN_BYTES) {
// Valid byte in a bytes object.
vstr_add_byte(&lex->vstr, c);
}
#else
if (c < 0x100) {
// Without unicode everything is just added as an 8-bit byte.
vstr_add_byte(&lex->vstr, c);
}
#endif
else {
// Character out of range; this raises a generic SyntaxError.
lex->tok_kind = MP_TOKEN_INVALID;
}
}
} else {
// Add the "character" as a byte so that we remain 8-bit clean.
// This way, strings are parsed correctly whether or not they contain utf-8 chars.
vstr_add_byte(&lex->vstr, CUR_CHAR(lex));
}
}
next_char(lex);
}
// check we got the required end quotes
if (n_closing < num_quotes) {
lex->tok_kind = MP_TOKEN_LONELY_STRING_OPEN;
}
// cut off the end quotes from the token text
vstr_cut_tail_bytes(&lex->vstr, n_closing);
}
// This function returns whether it has crossed a newline or not.
// It therefore always return true if stop_at_newline is true
static bool skip_whitespace(mp_lexer_t *lex, bool stop_at_newline) {
while (!is_end(lex)) {
if (is_physical_newline(lex)) {
if (stop_at_newline && lex->nested_bracket_level == 0) {
return true;
}
next_char(lex);
} else if (is_whitespace(lex)) {
next_char(lex);
} else if (is_char(lex, '#')) {
next_char(lex);
while (!is_end(lex) && !is_physical_newline(lex)) {
next_char(lex);
}
// will return true on next loop
} else if (is_char_and(lex, '\\', '\n')) {
// line-continuation, so don't return true
next_char(lex);
next_char(lex);
} else {
break;
}
}
return false;
}
void mp_lexer_to_next(mp_lexer_t *lex) {
#if MICROPY_PY_FSTRINGS
if (lex->fstring_args.len && lex->fstring_args_idx == 0) {
// moving onto the next token means the literal string is complete.
// switch into injecting the format args.
vstr_add_byte(&lex->fstring_args, ')');
lex->chr0_saved = lex->chr0;
lex->chr1_saved = lex->chr1;
lex->chr2_saved = lex->chr2;
lex->chr0 = lex->fstring_args.buf[0];
lex->chr1 = lex->fstring_args.buf[1];
lex->chr2 = lex->fstring_args.buf[2];
// we've already extracted 3 chars, but setting this non-zero also
// means we'll start consuming the fstring data
lex->fstring_args_idx = 3;
}
#endif
// start new token text
vstr_reset(&lex->vstr);
// skip white space and comments
// set the newline tokens at the line and column of the preceding line:
// only advance on the pointer until a new line is crossed, save the
// line and column, and then readvance it
bool had_physical_newline = skip_whitespace(lex, true);
// set token source information
lex->tok_line = lex->line;
lex->tok_column = lex->column;
if (lex->emit_dent < 0) {
lex->tok_kind = MP_TOKEN_DEDENT;
lex->emit_dent += 1;
} else if (lex->emit_dent > 0) {
lex->tok_kind = MP_TOKEN_INDENT;
lex->emit_dent -= 1;
} else if (had_physical_newline) {
// The cursor is at the end of the previous line, pointing to a
// physical newline. Skip any remaining whitespace, comments, and
// newlines.
skip_whitespace(lex, false);
lex->tok_kind = MP_TOKEN_NEWLINE;
size_t num_spaces = lex->column - 1;
if (num_spaces == indent_top(lex)) {
} else if (num_spaces > indent_top(lex)) {
indent_push(lex, num_spaces);
lex->emit_dent += 1;
} else {
while (num_spaces < indent_top(lex)) {
indent_pop(lex);
lex->emit_dent -= 1;
}
if (num_spaces != indent_top(lex)) {
lex->tok_kind = MP_TOKEN_DEDENT_MISMATCH;
}
}
} else if (is_end(lex)) {
lex->tok_kind = MP_TOKEN_END;
} else if (is_string_or_bytes(lex)) {
// a string or bytes literal
// Python requires adjacent string/bytes literals to be automatically
// concatenated. We do it here in the tokeniser to make efficient use of RAM,
// because then the lexer's vstr can be used to accumulate the string literal,
// in contrast to creating a parse tree of strings and then joining them later
// in the compiler. It's also more compact in code size to do it here.
// MP_TOKEN_END is used to indicate that this is the first string token
lex->tok_kind = MP_TOKEN_END;
// Loop to accumulate string/bytes literals
do {
// parse type codes
bool is_raw = false;
bool is_fstring = false;
mp_token_kind_t kind = MP_TOKEN_STRING;
int n_char = 0;
if (is_char(lex, 'u')) {
n_char = 1;
} else if (is_char(lex, 'b')) {
kind = MP_TOKEN_BYTES;
n_char = 1;
if (is_char_following(lex, 'r')) {
is_raw = true;
n_char = 2;
}
} else if (is_char(lex, 'r')) {
is_raw = true;
n_char = 1;
if (is_char_following(lex, 'b')) {
kind = MP_TOKEN_BYTES;
n_char = 2;
}
#if MICROPY_PY_FSTRINGS
if (is_char_following(lex, 'f')) {
is_fstring = true;
n_char = 2;
}
#endif
}
#if MICROPY_PY_FSTRINGS
else if (is_char(lex, 'f')) {
is_fstring = true;
n_char = 1;
if (is_char_following(lex, 'r')) {
is_raw = true;
n_char = 2;
}
}
#endif
// Set or check token kind
if (lex->tok_kind == MP_TOKEN_END) {
lex->tok_kind = kind;
} else if (lex->tok_kind != kind) {
// Can't concatenate string with bytes
break;
}
// Skip any type code characters
if (n_char != 0) {
next_char(lex);
if (n_char == 2) {
next_char(lex);
}
}
// Parse the literal
parse_string_literal(lex, is_raw, is_fstring);
// Skip whitespace so we can check if there's another string following
skip_whitespace(lex, true);
} while (is_string_or_bytes(lex));
} else if (is_head_of_identifier(lex)) {
lex->tok_kind = MP_TOKEN_NAME;
// get first char (add as byte to remain 8-bit clean and support utf-8)
vstr_add_byte(&lex->vstr, CUR_CHAR(lex));
next_char(lex);
// get tail chars
while (!is_end(lex) && is_tail_of_identifier(lex)) {
vstr_add_byte(&lex->vstr, CUR_CHAR(lex));
next_char(lex);
}
// Check if the name is a keyword.
// We also check for __debug__ here and convert it to its value. This is
// so the parser gives a syntax error on, eg, x.__debug__. Otherwise, we
// need to check for this special token in many places in the compiler.
const char *s = vstr_null_terminated_str(&lex->vstr);
for (size_t i = 0; i < MP_ARRAY_SIZE(tok_kw); i++) {
int cmp = strcmp(s, tok_kw[i]);
if (cmp == 0) {
lex->tok_kind = MP_TOKEN_KW_FALSE + i;
if (lex->tok_kind == MP_TOKEN_KW___DEBUG__) {
lex->tok_kind = (MP_STATE_VM(mp_optimise_value) == 0 ? MP_TOKEN_KW_TRUE : MP_TOKEN_KW_FALSE);
}
break;
} else if (cmp < 0) {
// Table is sorted and comparison was less-than, so stop searching
break;
}
}
} else if (is_digit(lex) || (is_char(lex, '.') && is_following_digit(lex))) {
bool forced_integer = false;
if (is_char(lex, '.')) {
lex->tok_kind = MP_TOKEN_FLOAT_OR_IMAG;
} else {
lex->tok_kind = MP_TOKEN_INTEGER;
if (is_char(lex, '0') && is_following_base_char(lex)) {
forced_integer = true;
}
}
// get first char
vstr_add_char(&lex->vstr, CUR_CHAR(lex));
next_char(lex);
// get tail chars
while (!is_end(lex)) {
if (!forced_integer && is_char_or(lex, 'e', 'E')) {
lex->tok_kind = MP_TOKEN_FLOAT_OR_IMAG;
vstr_add_char(&lex->vstr, 'e');
next_char(lex);
if (is_char(lex, '+') || is_char(lex, '-')) {
vstr_add_char(&lex->vstr, CUR_CHAR(lex));
next_char(lex);
}
} else if (is_letter(lex) || is_digit(lex) || is_char(lex, '.')) {
if (is_char_or3(lex, '.', 'j', 'J')) {
lex->tok_kind = MP_TOKEN_FLOAT_OR_IMAG;
}
vstr_add_char(&lex->vstr, CUR_CHAR(lex));
next_char(lex);
} else if (is_char(lex, '_')) {
next_char(lex);
} else {
break;
}
}
} else {
// search for encoded delimiter or operator
// assert that the token enum value fits in a byte, so they all fit in tok_enc_kind
MP_STATIC_ASSERT(MP_TOKEN_NUMBER_OF <= 256);
const char *t = tok_enc;
size_t tok_enc_index = 0;
for (; *t != 0 && !is_char(lex, *t); t += 1) {
if (*t == 'e' || *t == 'c') {
t += 1;
}
tok_enc_index += 1;
}
next_char(lex);
if (*t == 0) {
// didn't match any delimiter or operator characters
lex->tok_kind = MP_TOKEN_INVALID;
} else if (*t == '!') {
// "!=" is a special case because "!" is not a valid operator
if (is_char(lex, '=')) {
next_char(lex);
lex->tok_kind = MP_TOKEN_OP_NOT_EQUAL;
} else {
lex->tok_kind = MP_TOKEN_INVALID;
}
} else if (*t == '.') {
// "." and "..." are special cases because ".." is not a valid operator
if (is_char_and(lex, '.', '.')) {
next_char(lex);
next_char(lex);
lex->tok_kind = MP_TOKEN_ELLIPSIS;
} else {
lex->tok_kind = MP_TOKEN_DEL_PERIOD;
}
} else {
// matched a delimiter or operator character
// get the maximum characters for a valid token
t += 1;
size_t t_index = tok_enc_index;
while (*t == 'c' || *t == 'e') {
t_index += 1;
if (is_char(lex, t[1])) {
next_char(lex);
tok_enc_index = t_index;
if (*t == 'e') {
break;
}
} else if (*t == 'c') {
break;
}
t += 2;
}
// set token kind
lex->tok_kind = tok_enc_kind[tok_enc_index];
// compute bracket level for implicit line joining
if (lex->tok_kind == MP_TOKEN_DEL_PAREN_OPEN || lex->tok_kind == MP_TOKEN_DEL_BRACKET_OPEN || lex->tok_kind == MP_TOKEN_DEL_BRACE_OPEN) {
lex->nested_bracket_level += 1;
} else if (lex->tok_kind == MP_TOKEN_DEL_PAREN_CLOSE || lex->tok_kind == MP_TOKEN_DEL_BRACKET_CLOSE || lex->tok_kind == MP_TOKEN_DEL_BRACE_CLOSE) {
lex->nested_bracket_level -= 1;
}
}
}
}
mp_lexer_t *mp_lexer_new(qstr src_name, mp_reader_t reader) {
mp_lexer_t *lex = m_new_obj(mp_lexer_t);
lex->source_name = src_name;
lex->reader = reader;
lex->line = 1;
lex->column = (size_t)-2; // account for 3 dummy bytes
lex->emit_dent = 0;
lex->nested_bracket_level = 0;
lex->alloc_indent_level = MICROPY_ALLOC_LEXER_INDENT_INIT;
lex->num_indent_level = 1;
lex->indent_level = m_new(uint16_t, lex->alloc_indent_level);
vstr_init(&lex->vstr, 32);
#if MICROPY_PY_FSTRINGS
vstr_init(&lex->fstring_args, 0);
lex->fstring_args_idx = 0;
#endif
// store sentinel for first indentation level
lex->indent_level[0] = 0;
// load lexer with start of file, advancing lex->column to 1
// start with dummy bytes and use next_char() for proper EOL/EOF handling
lex->chr0 = lex->chr1 = lex->chr2 = 0;
next_char(lex);
next_char(lex);
next_char(lex);
// preload first token
mp_lexer_to_next(lex);
// Check that the first token is in the first column unless it is a
// newline. Otherwise we convert the token kind to INDENT so that
// the parser gives a syntax error.
if (lex->tok_column != 1 && lex->tok_kind != MP_TOKEN_NEWLINE) {
lex->tok_kind = MP_TOKEN_INDENT;
}
return lex;
}
mp_lexer_t *mp_lexer_new_from_str_len(qstr src_name, const char *str, size_t len, size_t free_len) {
mp_reader_t reader;
mp_reader_new_mem(&reader, (const byte *)str, len, free_len);
return mp_lexer_new(src_name, reader);
}
#if MICROPY_READER_POSIX || MICROPY_READER_VFS
mp_lexer_t *mp_lexer_new_from_file(qstr filename) {
mp_reader_t reader;
mp_reader_new_file(&reader, filename);
return mp_lexer_new(filename, reader);
}
#if MICROPY_HELPER_LEXER_UNIX
mp_lexer_t *mp_lexer_new_from_fd(qstr filename, int fd, bool close_fd) {
mp_reader_t reader;
mp_reader_new_file_from_fd(&reader, fd, close_fd);
return mp_lexer_new(filename, reader);
}
#endif
#endif
void mp_lexer_free(mp_lexer_t *lex) {
if (lex) {
lex->reader.close(lex->reader.data);
vstr_clear(&lex->vstr);
#if MICROPY_PY_FSTRINGS
vstr_clear(&lex->fstring_args);
#endif
m_del(uint16_t, lex->indent_level, lex->alloc_indent_level);
m_del_obj(mp_lexer_t, lex);
}
}
#if 0
// This function is used to print the current token and should only be
// needed to debug the lexer, so it's not available via a config option.
void mp_lexer_show_token(const mp_lexer_t *lex) {
printf("(" UINT_FMT ":" UINT_FMT ") kind:%u str:%p len:%zu", lex->tok_line, lex->tok_column, lex->tok_kind, lex->vstr.buf, lex->vstr.len);
if (lex->vstr.len > 0) {
const byte *i = (const byte *)lex->vstr.buf;
const byte *j = (const byte *)i + lex->vstr.len;
printf(" ");
while (i < j) {
unichar c = utf8_get_char(i);
i = utf8_next_char(i);
if (unichar_isprint(c)) {
printf("%c", (int)c);
} else {
printf("?");
}
}
}
printf("\n");
}
#endif
#endif // MICROPY_ENABLE_COMPILER