-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot3dtfunc.m
243 lines (194 loc) · 7.17 KB
/
plot3dtfunc.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
function [h_FR h_surf h_poles h_polewt] = plot3dtfunc(data_filename,bt,ct,specs)
% [h_FR h_surf h_poles h_polewt] = plot3dtfunc(data_filename,bt,ct,specs)
%
% plot the magnitude of the transfer function over a rectanglular region of the complex plane.
% specs are N, projection_method, and s0
N = 136; % ROM size
% projection_method = 'explicit';
projection_method = 'implicit';
s0 = (1+1i)*1e10; % expansion point for the basic 1 point shift-invert Arnoldi for MOR
s0string = '(1+1i)*1e10';
nrpts = 200; rrange = [0 10];
nipts = 200; irange = [0 10.1];
ROI = [9 10];
FRdomain = 1i * 10.^ROI;
eigtol = 1e-12; % any eigs (of (A-s0E)\E) with magnitude smaller than this are considered zero
reflect_about_real_axis = false;
if exist('specs','var')
N = specs.N; % ROM size
projection_method = specs.projection_method;
s0 = specs.s0;
end
model_name = sprintf('%ss_{%d%d}',data_filename,bt,ct);
% define r-axis sample points
number_of_positive_rpts = floor(nrpts/2);
[~, rfrq] = tfdomain(number_of_positive_rpts,rrange);
rfrq = [fliplr(rfrq) 0 -rfrq]; % Make this plot symmetric about i-axis.
real_0 = rfrq==0; % This is the index for r=0.
% define i-axis sample points
[~, ifrq] = tfdomain(nipts,irange,'linear');
ROImask = 10^ROI(1) <= ifrq & ifrq <= 10^ROI(2);
ROIfrq = ifrq(ROImask);
% construct the rectangular grid of real "frequency" points
[rpts ipts] = meshgrid(rfrq,ifrq);
% transfer function domain in the complex plane
s = complex(2*pi*rpts,2*pi*ipts); % s is a nipts x nrpts matrix.
%% Construct suitably accurate ROM for analysis
[A E b c] = realization(data_filename,bt,ct);
[AE R] = make_SI_op(A,E,b,s0);
result = band_Arnoldi(N,R,AE); % use band-Arnoldi to get projection basis V
V = result.V;
H = result.H;
rho = result.rho;
% evaluate transfer function at points s
if strcmp(projection_method,'explicit')
if ~isreal(V)
V = make_basis_real(V);
end
n = size(V,2);
A = V'*A*V; E = V'*E*V; b = V'*b; c = V'*c; % Replace realization with size n ROM realization
tf = abs(transfer_function([],A,E,c,b,s ));
tf_s0 = abs(transfer_function([],A,E,c,b,s0));
else
n = size(V,2);
c = V'*c;
tf = abs(tf_implicit(H,rho,c,s0,s));
tf_s0 = abs(tf_implicit(H,rho,c,s0,s0));
end
% plot 2d cross-section over the i-axis
h_FR = figure();
ROM_frq_response = tf(ROImask,real_0);
semilogy(ROIfrq,ROM_frq_response,'k');
% plot URM frequency response, if available
[URM_frq_response URM_ROIfrq] = URM_freq_response(data_filename,bt,ct,ROIfrq);
URM_frq_response = abs(URM_frq_response)';
err = norm(URM_frq_response - ROM_frq_response) / norm(URM_frq_response);
h = line(URM_ROIfrq,URM_frq_response,'Color','r','LineWidth',1,'LineStyle','--','Marker','+');
uistack(h,'bottom');
title(sprintf('%s Gain: n=%g, %s, s_0 = %s, err = %g',model_name,n,projection_method,s0string,err));
xlabel('\itf'); ylabel('|H(2\pi \itf)|');
%% plot transfer function as surface over C
log_tf = log10(tf);
h_surf = figure('name',sprintf('%s surf',model_name));
surf(rpts,ipts,log_tf);
if reflect_about_real_axis
hold on; surf(rpts,-ipts,log_tf); hold off; % mirror
end
hold on
s0r = real(s0)/(2*pi);
s0i = imag(s0)/(2*pi);
scatter3(s0r,s0i,log10(tf_s0), 256,'r','o'); % expansion point s0
h = line([s0r s0r],[s0i s0i],zlim,'lineWidth',2,'Color','b','LineStyle','--');
uistack(h,'bottom');
hold off
% highlight frequency response
line(zeros(1,length(ifrq)),ifrq, log_tf(:,real_0),'color','w','linewidth',3);
line(zeros(1,nnz(ROImask)), ROIfrq, log10(ROM_frq_response),'color','m','linewidth',3);
if reflect_about_real_axis
line(zeros(1,nnz(ROImask)),-ROIfrq,log10(ROM_frq_response),'color','m','linewidth',3);% mirror
end
title(sprintf('%s Gain: n=%g, %s, s_0 = %s',model_name,n,projection_method,s0string));
ylabel('Im(s)'); xlabel('Re(s)'); zlabel('log_{10}|H(s)|');
set(gca,'XScale','linear','YScale','linear','ZScale','linear');
if reflect_about_real_axis
centered_axis(rfrq,[-ifrq ifrq]);
else
centered_axis(rfrq,ifrq);
end
view(68,6);
cameratoolbar;
h_poles = figure;
% Plot contour plot of full transfer function
contour(2*pi*rpts,2*pi*ipts,log10(tf));
set(gca,'XScale','linear','YScale','linear');
% if reflect_about_real_axis
% hold on; contour(2*pi*rpts,-2*pi*ipts,log10(tf)); hold off;
% end
%% ************* determine and plot poles ****************
if strcmp(projection_method,'explicit')
[AT ET Q Z V W] = qz(A,E); % note that we have renamed V
clear Q Z
mu = ordeig(AT,ET);
%% compute residues/weights
f = sum(abs(W'*b),2);
g = sum(abs(V'*c),2);
residue = f(:) .* g(:);
% This scaling is necessary for W'*En*V = I, which is an assumption for the residue
% computation.
vec_scaling = diag(W'*E*V);
lambda = 1./(mu-s0);
inf_pole = abs(lambda) < eigtol; % Anything this far away from s0 is infinite.
mu(inf_pole) = []; % We discard infinite Ritz values for the plot
residue(inf_pole) = [];
lambda(inf_pole) = [];
vec_scaling(inf_pole) = [];
wt = abs(residue) ./ abs(vec_scaling) ./ (1+d2S(mu,FRdomain)); %abs(real(mu)); %abs(real(mu)); % Aguirre's DPI. %
else
[W D] = eig(H);
lambda = diag(D);
inf_pole = abs(lambda) <eigtol; % Anything this far away from the origin is infinite.
mu = s0 + 1 ./ lambda;
% Compute pole mass
f = sum(abs(c'*W),1)';
g = sum(abs(W\rho),2);
delta = abs(s0-mu) ./ (1+d2S(mu,FRdomain));
delta(isinf(mu)) = 1;
wt = delta .* f .* g;
ROM_mass = sum(wt);
end
[slambda idx] = sort(lambda,'descend'); % lambda sorted by magnitude
slamu = mu(idx); % mu sorted by lambda magnitude (convergence order)
[wt_order idx] = sort(log10(wt),'descend');
ds = dotsize(wt_order);
mu = mu(idx);
hold on
ninf = d2S(mu,2*pi*FRdomain) < 1e10;
scatter(real(mu(ninf)),imag(mu(ninf)),ds(ninf),ds(ninf),'*');
h = line([0 0],2*pi*10.^ROI,'lineWidth',1,'Color','r','LineStyle','-'); % segment on i-axis
uistack(h,'bottom');
title(sprintf('%s poles: n=%g, %s, s_0 = %s',model_name,n, projection_method, s0string));
ylabel('Im(s)'); xlabel('Re(s)');
scatter(real(s0),imag(s0),96,'r','p','MarkerFaceColor','r'); % expansion point s0
circle(real(s0), imag(s0),abs(slamu(1)-s0),'g-.');
circle(real(s0), imag(s0),abs(slamu(10)-s0),'b-.');
circle(real(s0),-imag(s0),abs(slamu(1)-s0),'g-.');
circle(real(s0),-imag(s0),abs(slamu(10)-s0),'b-.');
hold off
a = max(abs([real(mu); imag(mu)]));
xlim([-a a]);
ylim([-a a]);
putaxis
%% plot wt magnitudes with dot size
h_polewt = figure;
scatter(1:length(wt), wt_order, ds,ds,'*');
colorbar;
title(sprintf('%s pole weight, n=%d, %s, s_0 = %s',model_name,n,projection_method,s0string));
function ds = dotsize(orders)
% dot size indicates order of magnitude
sizes = [2 8 16 32 64 128];
% sizes = [1 8 16 21 32 48 64 80 110 128];
d = length(sizes);
orders = round(orders);
maxq = max(orders);
% minq = min(orders);
adjusted_orders = orders-maxq+d;
adjusted_orders(adjusted_orders<1) = 1;
ds = sizes(adjusted_orders);
end
function centered_axis(rpts,ipts)
rmax = max(rpts); rmin = min(rpts);
imax = max(ipts); imin = min(ipts);
rlength = rmax-rmin; ilength = imax-imin;
if rlength > ilength
rlim = [rmin rmax];
sum = imin + imax;
ilim = [sum-rlength sum+rlength]/2;
else
ilim = [imin imax];
sum = rmin+rmax;
rlim = [sum-ilength sum+ilength]/2;
end
xlim(rlim);
ylim(ilim);
end
end