-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmodel.py
221 lines (191 loc) · 9.27 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
class Meta_Linear(torch.nn.Linear): #used in MAML to forward input with fast weight
def __init__(self, in_features, out_features):
super(Meta_Linear, self).__init__(in_features, out_features)
self.weight.fast = None #Lazy hack to add fast weight link
self.bias.fast = None
def forward(self, x):
if self.weight.fast is not None and self.bias.fast is not None:
out = F.linear(x, self.weight.fast, self.bias.fast) #weight.fast (fast weight) is the temporaily adapted weight
else:
out = super(Meta_Linear, self).forward(x)
return out
class Meta_Embedding(torch.nn.Embedding): #used in MAML to forward input with fast weight
def __init__(self, num_embedding, embedding_dim):
super(Meta_Embedding, self).__init__(num_embedding, embedding_dim)
self.weight.fast = None
def forward(self, x):
if self.weight.fast is not None:
out = F.embedding(
x, self.weight.fast, self.padding_idx, self.max_norm,
self.norm_type, self.scale_grad_by_freq, self.sparse)
else:
out = F.embedding(
x, self.weight, self.padding_idx, self.max_norm,
self.norm_type, self.scale_grad_by_freq, self.sparse)
return out
class Emb(nn.Module):
def __init__(self, col_names, max_idxs, embedding_size=4, use_cuda=True):
"""
fnames: feature names
max_idxs: array of max_idx of each feature
embedding_size: size of embedding
dropout: prob for dropout, set None if no dropout
use_cuda: bool, True for gpu or False for cpu
"""
super(Emb, self).__init__()
self.static_emb = StEmb(col_names['static'], max_idxs['static'], embedding_size, use_cuda)
self.ad_emb = StEmb(col_names['ad'], max_idxs['ad'], embedding_size, use_cuda)
self.dynamic_emb = DyEmb(col_names['dynamic'], max_idxs['dynamic'], embedding_size, use_cuda)
self.col_names = col_names
self.col_length_name = [x + '_length' for x in col_names['dynamic']]
def forward(self, x):
static_emb = self.static_emb(x[self.col_names['static']])
dynamic_emb = self.dynamic_emb(x[self.col_names['dynamic']], x[self.col_length_name])
concat_embeddings = torch.cat([static_emb, dynamic_emb], 1)
ad_emb = self.ad_emb(x[self.col_names['ad']])
#concat_embeddings = static_emb
return concat_embeddings, ad_emb
class DyEmb(nn.Module):
def __init__(self, fnames, max_idxs, embedding_size=4, use_cuda=True):
"""
fnames: feature names
max_idxs: array of max_idx of each feature
embedding_size: size of embedding
dropout: prob for dropout, set None if no dropout
method: 'avg' or 'sum'
use_cuda: bool, True for gpu or False for cpu
"""
super(DyEmb, self).__init__()
self.fnames = fnames
self.max_idxs = max_idxs
self.embedding_size = embedding_size
self.use_cuda = use_cuda
# initial layer
self.embeddings = nn.ModuleList(
[Meta_Embedding(max_idx + 1, self.embedding_size) for max_idx in self.max_idxs.values()])
#self.embeddings = nn.ModuleList([Meta_Embedding(max_idx, self.embedding_size) for max_idx in self.max_idxs])
def forward(self, dynamic_ids, dynamic_lengths):
"""
input: relative id
dynamic_ids: Batch_size * Field_size * Max_feature_size
dynamic_lengths: Batch_size * Field_size
return: Batch_size * Field_size * Embedding_size
"""
concat_embeddings = []
for i, key in enumerate(self.fnames):
# B*M
dynamic_ids_tensor = torch.LongTensor(np.array(dynamic_ids[key].values.tolist()))
dynamic_lengths_tensor = torch.LongTensor(dynamic_lengths[key + '_length'].values.astype(int))
if self.use_cuda:
dynamic_ids_tensor = dynamic_ids_tensor.cuda()
batch_size = dynamic_ids_tensor.size()[0]
# embedding layer B*M*E
dynamic_embeddings_tensor = self.embeddings[i](dynamic_ids_tensor)
# average B*M*E --AVG--> B*E
dynamic_lengths_tensor = dynamic_lengths_tensor.unsqueeze(1)
mask = (torch.arange(dynamic_embeddings_tensor.size(1))[None, :] < dynamic_lengths_tensor[:, None]).type(torch.cuda.FloatTensor)
mask = mask.squeeze(1).unsqueeze(2)
dynamic_embedding = dynamic_embeddings_tensor.masked_fill(mask == 0, 0)
dynamic_lengths_tensor[dynamic_lengths_tensor == 0] = 1
dynamic_embedding = (dynamic_embedding.sum(dim=1) / dynamic_lengths_tensor.cuda()).unsqueeze(1)
concat_embeddings.append(dynamic_embedding.view(batch_size, 1, self.embedding_size))
# B*F*E
concat_embeddings = torch.cat(concat_embeddings, 1)
return concat_embeddings
class StEmb(nn.Module):
def __init__(self, col_names, max_idxs, embedding_size=4, use_cuda=True):
"""
fnames: feature names
max_idxs: array of max_idx of each feature
embedding_size: size of embedding
dropout: prob for dropout, set None if no dropout
use_cuda: bool, True for gpu or False for cpu
"""
super(StEmb, self).__init__()
self.col_names = col_names
self.max_idxs = max_idxs
self.embedding_size = embedding_size
self.use_cuda = use_cuda
# initial layer
self.embeddings = nn.ModuleList(
[Meta_Embedding(max_idx + 1, self.embedding_size) for max_idx in self.max_idxs.values()])
def forward(self, static_ids):
"""
input: relative id
static_ids: Batch_size * Field_size
return: Batch_size * Field_size * Embedding_size
"""
concat_embeddings = []
batch_size = static_ids.shape[0]
for i, key in enumerate(self.col_names):
# B*1
static_ids_tensor = torch.LongTensor(static_ids[key].values.astype(int))
if self.use_cuda:
static_ids_tensor = static_ids_tensor.cuda()
static_embeddings_tensor = self.embeddings[i](static_ids_tensor)
concat_embeddings.append(static_embeddings_tensor.view(batch_size, 1, self.embedding_size))
# B*F*E
concat_embeddings = torch.cat(concat_embeddings, 1)
return concat_embeddings
class MultiLayerPerceptron(torch.nn.Module):
def __init__(self, input_dim, embed_dims, dropout, output_layer=True):
super().__init__()
layers = list()
for embed_dim in embed_dims:
layers.append(Meta_Linear(input_dim, embed_dim))
layers.append(torch.nn.ReLU())
input_dim = embed_dim
if output_layer:
layers.append(Meta_Linear(input_dim, 1))
self.mlp = torch.nn.Sequential(*layers)
def forward(self, x):
"""
:param x: Float tensor of size ``(batch_size, num_fields, embed_dim)``
"""
return self.mlp(x)
class WideAndDeepModel(torch.nn.Module):
"""
A pytorch implementation of wide and deep learning.
Reference:
HT Cheng, et al. Wide & Deep Learning for Recommender Systems, 2016.
"""
def __init__(self, col_names, max_ids, embed_dim, mlp_dims, dropout, use_cuda, num_expert, num_output):
super().__init__()
self.embedding = Emb(col_names, max_ids, embed_dim, use_cuda)
self.embed_output_dim = (len(col_names['static']) + len(col_names['dynamic'])) * embed_dim
self.ad_embed_dim = embed_dim * (1 + len(col_names['ad']))
expert = []
for i in range(num_expert):
expert.append(MultiLayerPerceptron(self.embed_output_dim, mlp_dims, dropout, False))
self.mlp = nn.ModuleList(expert)
output_layer = []
for i in range(num_output):
output_layer.append(Meta_Linear(mlp_dims[-1], 1))
self.output_layer = nn.ModuleList(output_layer)
self.attention_layer = torch.nn.Sequential(Meta_Linear(self.ad_embed_dim, mlp_dims[-1]),
torch.nn.ReLU(),
Meta_Linear(mlp_dims[-1], num_expert),
torch.nn.Softmax(dim=1))
self.output_attention_layer = torch.nn.Sequential(Meta_Linear(self.ad_embed_dim, mlp_dims[-1]),
torch.nn.ReLU(),
Meta_Linear(mlp_dims[-1], num_output),
torch.nn.Softmax(dim=1))
def forward(self, x):
"""
:param x: Long tensor of size ``(batch_size, num_fields)``
"""
emb, ad_emb = self.embedding(x)
ad_emb = torch.cat([torch.mean(emb, 1, True), ad_emb], 1)
fea = 0
att = self.attention_layer(ad_emb.view(-1, self.ad_embed_dim))
for i in range(len(self.mlp)):
fea += (att[:, i].unsqueeze(1) * self.mlp[i](emb.view(-1, self.embed_output_dim)))
result = 0
att = self.output_attention_layer(ad_emb.view(-1, self.ad_embed_dim))
for i in range(len(self.output_layer)):
result += (att[:, i].unsqueeze(1) * torch.sigmoid(self.output_layer[i](fea)))
return result.squeeze(1)