-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmain.py
55 lines (53 loc) · 1.98 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import os
from run import RunLookalike
import torch
import numpy as np
import random
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', default='WD')
parser.add_argument('--sample_method', default='normal')#unit sqrt normal
parser.add_argument('--epoch', type=int, default=1)
parser.add_argument('--task_count', type=int, default=5)
parser.add_argument('--num_expert', type=int, default=8)
parser.add_argument('--num_output', type=int, default=5)
parser.add_argument('--batchsize', type=int, default=512)
parser.add_argument('--seed', type=int, default=2021)
parser.add_argument('--gpu', default='0')
parser.add_argument('--embed_size', type=int, default=64)
parser.add_argument('--local_train_lr', type=float, default=0.0002)
parser.add_argument('--local_test_lr', type=float, default=0.001)
parser.add_argument('--global_lr', type=float, default=0.001)
args = parser.parse_args()
seed = args.seed
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
print('local train lr: {}; local test lr: {}; global lr: {}; epoch: {}; gpu:{}'.format(args.local_train_lr, args.local_test_lr, args.global_lr, args.epoch, args.gpu))
config = {
'use_cuda': True,
'batchsize': args.batchsize,
'root_path': './data/processed_data/',
'is_meta': False,
'weight_decay': 0,
'model':
{
'mlp': {'dims': (64, 64), 'dropout': 0.2}
},
'emb_dim': args.embed_size,
'local_train_lr': args.local_train_lr,
'local_test_lr': args.local_test_lr,
'global_lr': args.global_lr,
'epoch': args.epoch,
'wd': 0,
'sample_method': args.sample_method,
'num_expert': args.num_expert,
'num_output': args.num_output,
'task_count': args.task_count
}
if __name__ == '__main__':
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
RunLookalike(config = config,
base_model_name = args.model_name,
).main()