-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpan_transcriptome_fxns.R
executable file
·262 lines (246 loc) · 8.72 KB
/
pan_transcriptome_fxns.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
### Assign a matrix of Blat scores to every Mummer block
blatScoresInMumms = function(Q, T, blat) {
n = length(Q)
scoreBlocks = vector("list", n)
for (i in 1:n) {
Qblock=Q[[i]]
Tblock=T[[i]]
if (length(Qblock) == 0) {
scoreBlocks[[i]] = as.vector(Tblock, mode="character")
} else {
if (length(Tblock) == 0) {
scoreBlocks[[i]] = as.vector(Qblock, mode="character")
} else {
scoreBlocks[[i]] = scoreMatrix(Qblock, Tblock, blat)
}
}
}
return(scoreBlocks)
}
### Collapse duplicate entries in adjacent blocks (after alignment)
collapse.dups = function(alignTable) {
temp=alignTable[,10:12]
x=alignTable[!(duplicated(temp)),]
altRem=findLooseDups(x[,10:12])
x=x[-(altRem),]
return(x)
}
### Find approximate duplicates with NA or missing values
findLooseDups = function(df) {
to.remove=c()
dupIDs1=names(table(df[,1]))[which(table(df[,1])>1)]
dupIDs1=dupIDs1[-1]
for (i in 1:length(dupIDs1)) {
my.rows=grep(dupIDs1[i], df[,1])
y=df[my.rows,]
check1=grep("-", y[,2])
if (length(check1)>0) { to.remove=append(to.remove, my.rows[check1]) }
if ((nrow(y) - length(check1)) > 1) {
check2 = which(y[,3]==0)
if (length(check2)>0) { to.remove=append(to.remove, my.rows[check2]) }
}
}
dupIDs2=names(table(df[,2]))[which(table(df[,2])>1)]
dupIDs2=dupIDs2[-1]
for (i in 1:length(dupIDs2)) {
my.rows=grep(dupIDs2[i], df[,2])
y=df[my.rows,]
check1=grep("-", y[,1])
if (length(check1)>0) { to.remove=append(to.remove, my.rows[check1]) }
if ((nrow(y) - length(check1)) > 1) {
check2 = which(y[,3]==0)
if (length(check2)>0) { to.remove=append(to.remove, my.rows[check2]) }
}
}
return(to.remove)
}
### Find which genes have changed position in one genome with respect to another
findPositionShifts = function(alignment, name1, name2) {
mutations=rep(NA, nrow(alignment))
start1=grep(paste0(c("GeneStart", name1), collapse="_"), colnames(alignment))
start2=grep(paste0(c("GeneStart", name2), collapse="_"), colnames(alignment))
end1=start1+1
end2=start2+1
prev1=max(alignment[1,start1], alignment[1,end1])
prev2=max(alignment[1,start2], alignment[1,end2])
for (i in 1:nrow(alignment)) {
if (is.na(alignment[i,start1])) {
mutations[i]="Deletion"
} else {
if (is.na(alignment[i,start2])) {
mutations[i]="Insertion"
} else {
if (alignment[i,2] != alignment[i,3]) {
mutations[i]="Relocation"
} else {
d1=abs(alignment[i,start1]-prev1)
d2=abs(alignment[i,start2]-prev2)
prev1=alignment[i,end1]
prev2=alignment[i,end2]
if (abs(d2-d1)>10000) {
mutations[i]="Relocation"
} else {
mutations[i]="Colinear"
}
}
}
}
}
return(mutations)
}
### Convert any non-numeric chromosome characters
fix.chromosomes = function(x) {
x = gsub("chromosome_", "", x)
x = gsub("scaffold_", "1", x)
x = gsub("Chr", "", x)
x = gsub("super_", "1", x)
x = as.numeric(x)
return(x)
}
### Create an F matrix of min possible alignment scores with gap penalty of 1
Fmatrix = function(S) {
F=matrix(0, nrow=(nrow(S)+1), ncol=(ncol(S)+1))
F[1,-1] = (-2) * seq(1:ncol(S))
F[-1,1] = (-2) * seq(1:nrow(S))
for (i in 2:nrow(F)) {
for (j in 2:ncol(F)) {
Match = F[i-1, j-1] + S[i-1, j-1]
Delete = F[i-1, j] - 2
Insert = F[i, j-1] - 2
F[i,j] = max(Match, Insert, Delete)
}
}
return(F)
}
### Find all Genes in Each Block from a Mummer File
geneBlocks=function(mummer, gff, sampleName) {
blocks=vector("list", nrow(mummer))
mumm.sample = mummer[, grep(sampleName, colnames(mummer))]
for (i in 1:nrow(mumm.sample)) {
p1=gff[which(gff$Chr==mumm.sample[i,4]),2:3]
genes=gff$Name[which(gff$Chr==mumm.sample[i,4])]
y=unname(unlist(mumm.sample[i,1:2]))
o=apply(p1, 1, function(x,y) max(x[1],y[1]) <= min(x[2],y[2]), y=sort(y))
g=which(o)
if (y[1] < y[2]) {
blocks[[i]]=as.vector(genes[g], mode="character")
} else {
blocks[[i]]=as.vector(genes[sort(g, decreasing=TRUE)], mode="character")
}
}
return(blocks)
}
### Generate a Pairwise Alignment Table for Mummer Block Score matrix
mummerAlignmentTable = function(Score.matrix, coords) {
pairwiseAln=data.frame()
ids=c("Rio", "Sobic")
if (is.matrix(Score.matrix)) {
a=traceback(Score.matrix)
x=matrix(unlist(rep(unname(coords), nrow(a))), nrow=nrow(a), byrow=TRUE)
colnames(x)=names(coords)
pairwiseAln = cbind(x,a)
} else {
findID = unlist(lapply(ids, function(x,y) length(grep(x, y)), y=Score.matrix))
tmp = data.frame("AlignmentA"=rep("-",max(findID)), "AlignmentB"=rep("-", max(findID)), "IDY"=rep(NA,max(findID)))
tmp[,which(findID>0)] = Score.matrix
x=matrix(unlist(rep(unname(coords), nrow(tmp))), nrow=nrow(tmp), byrow=TRUE)
colnames(x)=names(coords)
pairwiseAln = cbind(x,tmp)
}
return(pairwiseAln)
}
### Parse Blat Results
parse.blat = function(file) {
blat = read.table(file, header=FALSE, skip=5, sep="\t", stringsAsFactors=FALSE)
colnames(blat)=c("match", "mismatch", "repMatch", "Ns", "QgapCt", "QgapBases", "TgapCt", "TgapBases", "strand", "Qname", "Qsize", "Qstart", "Qend", "Tname", "Tsize", "Tstart", "Tend", "blockCt", "blockSize", "qStarts", "tStarts")
blat$Qcoverage=(blat$match + blat$mismatch)/blat$Qsize
blat$Tcoverage=(blat$match + blat$mismatch)/blat$Tsize
blat$identity=blat$match/(blat$match + blat$mismatch)
short = blat[, c(10:11,14:15,22:24)]
return(short)
}
### Parse GFF3 annotation into Gene only table
parse.gff=function(file) {
temp=read.table(file, header=FALSE, stringsAsFactors=FALSE, sep="\t")
temp$V1=fix.chromosomes(temp$V1)
temp=temp[grep("^gene$", temp$V3),]
x=lapply(temp$V9, function(x) unlist(strsplit(x, split=";")))
Name=gsub("Name=", "", unlist(lapply(x, `[[`, 2)))
Name=gsub("\\.g$", "", Name)
final=data.frame(Chr=temp$V1, Start=temp$V4, End=temp$V5, Name=Name)
return(final)
}
### Parse Mummer File into relevant table
parse.mummer=function(file) {
df = read.table(file, header=FALSE, stringsAsFactors=FALSE)
df[,12] = fix.chromosomes(df[,12])
df[,13] = fix.chromosomes(df[,13])
colnames(df) = c("S1", "E1", "S2", "E2", "L1", "L2", "IDY", "G1", "G2", "Cov1", "Cov2", "Chr1", "Chr2")
small = df[, c(1:6, 12:13)]
return(small)
}
### Get a matrix of Blat scores for 2 lists of genes
scoreMatrix = function(q, t, blat) {
m = matrix(0, nrow=length(q), ncol=length(t))
rownames(m) = q
colnames(m) = t
for (i in 1:length(q)) {
x = blat[grep(q[i], blat$Qname),]
for (k in 1:length(t)) {
y=x[grep(t[k], x$Tname),]
m[i,k] = max(y$identity)
}
}
m[is.infinite(m)] = 0
return(m)
}
### Perform traceback to get the best path in F matrix
traceback = function(S) {
AlignmentA = c()
AlignmentB = c()
IDY = c()
A = rownames(S)
B = colnames(S)
F = Fmatrix(S)
i = length(A) + 1
j = length(B) + 1
while ((i > 1) & (j > 1)) {
Score = F[i,j]
ScoreDiag = F[i-1, j-1]
ScoreUp = F[i, j-1]
ScoreLeft = F[i-1, j]
if (Score == (ScoreDiag + S[i-1, j-1])) {
AlignmentA = c(A[i-1], AlignmentA)
AlignmentB = c(B[j-1], AlignmentB)
IDY = c(S[i-1, j-1], IDY)
i = i-1
j = j-1
} else {
if (Score == (ScoreLeft - 2)) {
AlignmentA = c(A[i-1], AlignmentA)
AlignmentB = c("-", AlignmentB)
IDY = c(NA, IDY)
i = i-1
} else {
AlignmentA = c("-", AlignmentA)
AlignmentB = c(B[j-1], AlignmentB)
IDY=c(NA, IDY)
j = j-1
}
}
}
while (i > 1) {
AlignmentA = c(A[i-1], AlignmentA)
AlignmentB = c("-", AlignmentB)
IDY = c(NA, IDY)
i = i-1
}
while (j > 1) {
AlignmentB = c(B[j-1], AlignmentB)
AlignmentA = c("-", AlignmentA)
IDY = c(NA, IDY)
j = j-1
}
result=data.frame(AlignmentA, AlignmentB, IDY)
return(result)
}