diff --git a/emission/tests/modellingTests/TestGreedySimilarityBinning.py b/emission/tests/modellingTests/TestGreedySimilarityBinning.py index 937effc94..b96147706 100644 --- a/emission/tests/modellingTests/TestGreedySimilarityBinning.py +++ b/emission/tests/modellingTests/TestGreedySimilarityBinning.py @@ -139,12 +139,12 @@ def testPrediction(self): destination=(1,1) ) model_config = { - "metric": "od_similarity", - "similarity_threshold_meters": 500, # meters, - "apply_cutoff": False, - "clustering_way": 'origin_destination', - "incremental_evaluation": False - } + "metric": "od_similarity", + "similarity_threshold_meters": 500, # meters, + "apply_cutoff": False, + "clustering_way": 'origin_destination', + "incremental_evaluation": False + } model= eamtg.GreedySimilarityBinning(model_config) train = trips[0:5] test = trips[5] @@ -177,12 +177,12 @@ def testNoPrediction(self): threshold=binning_threshold, within_threshold=n ) model_config = { - "metric": "od_similarity", - "similarity_threshold_meters": 500, # meters, - "apply_cutoff": False, - "clustering_way": 'origin_destination', - "incremental_evaluation": False - } + "metric": "od_similarity", + "similarity_threshold_meters": 500, # meters, + "apply_cutoff": False, + "clustering_way": 'origin_destination', + "incremental_evaluation": False + } model= eamtg.GreedySimilarityBinning(model_config) model.fit(train) results, n = model.predict(test[0]) diff --git a/emission/tests/modellingTests/modellingTestAssets.py b/emission/tests/modellingTests/modellingTestAssets.py index 9ad662fe3..2e2fe8361 100644 --- a/emission/tests/modellingTests/modellingTestAssets.py +++ b/emission/tests/modellingTests/modellingTestAssets.py @@ -23,18 +23,26 @@ def generate_nearby_random_points(ref_coords,threshold): #convert given threshold in m to approx WGS84 coord dist. thresholdInWGS84 = threshold* (0.000001/0.11) - #generate a random coordinate in threshold's limit around the ref points. - dx=random.uniform(-thresholdInWGS84/2,thresholdInWGS84/2) - dy=random.uniform(-thresholdInWGS84/2,thresholdInWGS84/2) + #generate a random coordinate in threshold's limit around the ref points. OR we + # for eg, ref point is 0,0 and threshold is 100m , so we generate a radius from 0 to 50, say 34 + # in this example. A random radius is also generted from 0 to 360,say 0. We then take 34 step along x axis direction + # till radius length to get our new point, (34,0). When this function is called the next time to generate a point + #that has to be binned with previous one, we again generate r and theta , say 24 , 180 this time. + # Now this new point is at (-24,0). Both these points are within threshold (100 in this case)limit and therefore will + #be binned together. + radius=random.uniform(0,thresholdInWGS84/2) + theta=random.uniform(0,2*math.pi) + dx = radius * math.cos(theta) + dy = radius * math.sin (theta) #This basically gives a way to sample a point from within a square of length thresholdInWGS84 # around the ref. point. - return [ref_coords[0] +dx , ref_coords[1] +dy] + return [ref_coords[0] + dy , ref_coords[1] + dx] def generate_trip_coordinates( points_list: list[float], ref_coords, - InsideThreshold: bool, + insideThreshold: bool, threshold_meters: float, ) -> Tuple[float, float]: """generates trip coordinate data to use when mocking a set of trip data.i @@ -50,7 +58,7 @@ def generate_trip_coordinates( circle from some coordinates up to some threshold """ # if the point is to be generated within a threshold and it's not the first point - if InsideThreshold and points_list: + if insideThreshold and points_list: # if no ref. coordinates are provided, use any previously accepted point as ref. if ref_coords == None: ref_coords=random.choice(points_list) @@ -61,9 +69,10 @@ def generate_trip_coordinates( if ref_coords == None: new_point = generate_random_point() else: - # if ref coordinate are provided, use them as the starting point and iterate till required - # condition is satisfied + # if ref coordinate are provided, use them as the startisng point. new_point = ref_coords + # If the newly generated new_point ( be it when ref_coords given or not given) is not more + # than threshold_meters away from all the previously accepted points, keep generating new_point # while not all(ecc.calDistance(new_point, pt) > threshold_meters for pt in points_list): new_point = generate_random_point() return new_point @@ -226,8 +235,8 @@ def generate_mock_trips( # generate 'trip' number of points based on which among 'o' (Origin) ,'d' (Destination) or # 'od' (Origin-Destination) or '__' (None) should be in threshold proximity to each other. for within in trips_within_threshold: - origin_points.append(generate_trip_coordinates(origin_points, origin, InsideThreshold= (trip_part[0] == 'o' and within), threshold_meters= threshold)) - destination_points.append(generate_trip_coordinates(destination_points, destination, InsideThreshold=(trip_part[1] == 'd' and within), threshold_meters=threshold)) + origin_points.append(generate_trip_coordinates(origin_points, origin, insideThreshold= (trip_part[0] == 'o' and within), threshold_meters= threshold)) + destination_points.append(generate_trip_coordinates(destination_points, destination, insideThreshold=(trip_part[1] == 'd' and within), threshold_meters=threshold)) for o,d in zip(origin_points,destination_points): labels = {} if label_data is None or random.random() > has_label_p \