From c1bcc2856e1156ae300e3ac3bc73e84356aa3bee Mon Sep 17 00:00:00 2001 From: Jake <37048747+Jacob-Stevens-Haas@users.noreply.github.com> Date: Thu, 29 Aug 2024 19:15:47 -0700 Subject: [PATCH] NBK: convert callers to 3-arg check_local_stability() --- examples/8_trapping_sindy_examples/example.ipynb | 14 +++++++------- .../8_trapping_sindy_examples/example_dysts.py | 6 +++--- .../8_trapping_sindy_examples/trapping_extended.py | 12 ++++++------ .../von_karman_trapping_extended.ipynb | 4 ++-- .../von_karman_trapping_extended.py | 2 +- 5 files changed, 19 insertions(+), 19 deletions(-) diff --git a/examples/8_trapping_sindy_examples/example.ipynb b/examples/8_trapping_sindy_examples/example.ipynb index e02c8a2e..bbe365d3 100644 --- a/examples/8_trapping_sindy_examples/example.ipynb +++ b/examples/8_trapping_sindy_examples/example.ipynb @@ -240,7 +240,7 @@ "print(\"Frobenius Error = \", E_pred)\n", "mean_val = np.mean(x_test_pred, axis=0)\n", "mean_val = np.sqrt(np.sum(mean_val**2))\n", - "check_local_stability(r, Xi, sindy_opt, mean_val)\n", + "check_local_stability(Xi, sindy_opt, mean_val)\n", "\n", "# compute relative Frobenius error in the model coefficients\n", "terms = sindy_library.get_feature_names()\n", @@ -433,7 +433,7 @@ "print(\"Frobenius error = \", E_pred)\n", "mean_val = np.mean(x_test_pred, axis=0)\n", "mean_val = np.sqrt(np.sum(mean_val**2))\n", - "check_local_stability(r, Xi, sindy_opt, mean_val)\n", + "check_local_stability(Xi, sindy_opt, mean_val)\n", "\n", "# compute relative Frobenius error in the model coefficients\n", "terms = sindy_library.get_feature_names()\n", @@ -694,7 +694,7 @@ "\n", "mean_val = np.mean(x_test_pred, axis=0)\n", "mean_val = np.sqrt(np.sum(mean_val**2))\n", - "check_local_stability(r, Xi, sindy_opt, mean_val)\n", + "check_local_stability(Xi, sindy_opt, mean_val)\n", "E_pred = np.linalg.norm(x_test - x_test_pred) / np.linalg.norm(x_test)\n", "print(\"Frobenius error = \", E_pred)\n", "\n", @@ -924,7 +924,7 @@ "make_lissajou(r, x_train, x_test, x_train_pred, x_test_pred, \"mhd\")\n", "mean_val = np.mean(x_test_pred, axis=0)\n", "mean_val = np.sqrt(np.sum(mean_val**2))\n", - "check_local_stability(r, Xi, sindy_opt, mean_val)\n", + "check_local_stability(Xi, sindy_opt, mean_val)\n", "E_pred = np.linalg.norm(x_test - x_test_pred) / np.linalg.norm(x_test)\n", "print(E_pred)\n", "\n", @@ -1355,7 +1355,7 @@ "Q = np.tensordot(PQ_tensor, Xi, axes=([4, 3], [0, 1]))\n", "Q_sum = np.max(np.abs((Q + np.transpose(Q, [1, 2, 0]) + np.transpose(Q, [2, 0, 1]))))\n", "print(\"Max deviation from the constraints = \", Q_sum)\n", - "if check_local_stability(r, Xi, sindy_opt, 1):\n", + "if check_local_stability(Xi, sindy_opt, 1):\n", " x_train_pred = model.simulate(x_train[0, :], t, integrator_kws=integrator_keywords)\n", " x_test_pred = model.simulate(a0, t, integrator_kws=integrator_keywords)\n", " make_progress_plots(r, sindy_opt)\n", @@ -1365,7 +1365,7 @@ " make_lissajou(r, x_train, x_test, x_train_pred, x_test_pred, \"VonKarman\")\n", " mean_val = np.mean(x_test_pred, axis=0)\n", " mean_val = np.sqrt(np.sum(mean_val**2))\n", - " check_local_stability(r, Xi, sindy_opt, mean_val)\n", + " check_local_stability(Xi, sindy_opt, mean_val)\n", " A_guess = sindy_opt.A_history_[-1]\n", " m_guess = sindy_opt.m_history_[-1]\n", " E_pred = np.linalg.norm(x_test - x_test_pred) / np.linalg.norm(x_test)\n", @@ -1462,7 +1462,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.10.12" } }, "nbformat": 4, diff --git a/examples/8_trapping_sindy_examples/example_dysts.py b/examples/8_trapping_sindy_examples/example_dysts.py index d8dcbf58..908c3a99 100644 --- a/examples/8_trapping_sindy_examples/example_dysts.py +++ b/examples/8_trapping_sindy_examples/example_dysts.py @@ -255,7 +255,7 @@ plt.grid(True) plt.legend() - check_local_stability(r, Xi, sindy_opt, 1.0) + check_local_stability(Xi, sindy_opt, 1.0) Xi_true = (true_coefficients[i].T)[: Xi.shape[0], :] # run simulated annealing on the true system to make sure the system is amenable to trapping theorem @@ -356,7 +356,7 @@ x_test_pred = model.simulate(x_test[0, :], t, integrator_kws=integrator_keywords) # Check stability and try simulated annealing with the IDENTIFIED model - check_local_stability(r, Xi, sindy_opt, 1.0) + check_local_stability(Xi, sindy_opt, 1.0) PL_tensor = sindy_opt.PL_ PM_tensor = sindy_opt.PM_ L = np.tensordot(PL_tensor, Xi, axes=([3, 2], [0, 1])) @@ -483,7 +483,7 @@ def rhs(t, x): model.fit(x_train, t=t_train) Xi = model.coefficients().T -check_local_stability(r, Xi, sindy_opt, 1.0) +check_local_stability(Xi, sindy_opt, 1.0) # Fit a baseline model -- this is almost always an unstable model! model_baseline = ps.SINDy( diff --git a/examples/8_trapping_sindy_examples/trapping_extended.py b/examples/8_trapping_sindy_examples/trapping_extended.py index 994570b7..7abf64a8 100644 --- a/examples/8_trapping_sindy_examples/trapping_extended.py +++ b/examples/8_trapping_sindy_examples/trapping_extended.py @@ -159,7 +159,7 @@ mean_val = np.sqrt(np.sum(mean_val**2)) E_pred = np.linalg.norm(x_test - x_test_pred) / np.linalg.norm(x_test) print("Frobenius error = ", E_pred) -check_local_stability(r, Xi, sindy_opt, mean_val) +check_local_stability(Xi, sindy_opt, mean_val) # compute relative Frobenius error in the model coefficients sigma = 10 @@ -327,7 +327,7 @@ Qenergy = np.tensordot(PQ_tensor, Xi, axes=([4, 3], [0, 1])) mean_val = np.mean(x_test_pred, axis=0) mean_val = np.sqrt(np.sum(mean_val**2)) -check_local_stability(r, Xi, sindy_opt, mean_val) +check_local_stability(Xi, sindy_opt, mean_val) Q = np.tensordot(sindy_opt.PQ_, Xi, axes=([4, 3], [0, 1])) # %% [markdown] @@ -358,7 +358,7 @@ mean_val = np.sqrt(np.sum(mean_val**2)) E_pred = np.linalg.norm(x_test - x_test_pred) / np.linalg.norm(x_test) print("Frobenius error = ", E_pred) -check_local_stability(r, Xi, sindy_opt, mean_val) +check_local_stability(Xi, sindy_opt, mean_val) # compute relative Frobenius error in the model coefficients coef_pred = np.linalg.norm(Xi_lorenz - Xi) / np.linalg.norm(Xi_lorenz) @@ -412,7 +412,7 @@ Qenergy = np.tensordot(PQ_tensor, Xi, axes=([4, 3], [0, 1])) mean_val = np.mean(x_test_pred, axis=0) mean_val = np.sqrt(np.sum(mean_val**2)) -check_local_stability(r, Xi, sindy_opt, mean_val) +check_local_stability(Xi, sindy_opt, mean_val) Q = np.tensordot(sindy_opt.PQ_, Xi, axes=([4, 3], [0, 1])) print( "Maximum deviation from having zero totally symmetric part: ", @@ -473,7 +473,7 @@ Qenergy = np.tensordot(PQ_tensor, Xi, axes=([4, 3], [0, 1])) mean_val = np.mean(x_test_pred, axis=0) mean_val = np.sqrt(np.sum(mean_val**2)) -check_local_stability(r, Xi, sindy_opt, mean_val) +check_local_stability(Xi, sindy_opt, mean_val) Q = np.tensordot(sindy_opt.PQ_, Xi, axes=([4, 3], [0, 1])) print( "Maximum deviation from having zero totally symmetric part: ", @@ -512,7 +512,7 @@ mean_val = np.sqrt(np.sum(mean_val**2)) E_pred = np.linalg.norm(x_test - x_test_pred) / np.linalg.norm(x_test) print("Frobenius error = ", E_pred) -check_local_stability(r, Xi, sindy_opt, mean_val) +check_local_stability(Xi, sindy_opt, mean_val) # compute relative Frobenius error in the model coefficients coef_pred = np.linalg.norm(Xi_lorenz - Xi) / np.linalg.norm(Xi_lorenz) diff --git a/examples/8_trapping_sindy_examples/von_karman_trapping_extended.ipynb b/examples/8_trapping_sindy_examples/von_karman_trapping_extended.ipynb index 10c3a9b9..246ee0e9 100644 --- a/examples/8_trapping_sindy_examples/von_karman_trapping_extended.ipynb +++ b/examples/8_trapping_sindy_examples/von_karman_trapping_extended.ipynb @@ -610,7 +610,7 @@ "Qenstrophy = np.tensordot(PQ_tensor, Xi, axes=([4, 3], [0, 1]))\n", "mean_val = np.mean(a, axis=0)\n", "mean_val = np.sqrt(np.sum(mean_val**2))\n", - "check_local_stability(r, Xi, sindy_opt, mean_val)\n", + "check_local_stability(Xi, sindy_opt, mean_val)\n", "enstrophy_model = model\n", "# Q = np.tensordot(sindy_opt.PQ_, Xi, axes=([4, 3], [0, 1]))\n", "# Q_sum = np.max(np.abs((Q + np.transpose(Q, [1, 2, 0]) + np.transpose(Q, [2, 0, 1]))))\n", @@ -837,7 +837,7 @@ "Qenstrophy = np.tensordot(PQ_tensor, Xi, axes=([4, 3], [0, 1]))\n", "mean_val = np.mean(a, axis=0)\n", "mean_val = np.sqrt(np.sum(mean_val**2))\n", - "check_local_stability(r, Xi, sindy_opt, mean_val)\n", + "check_local_stability(Xi, sindy_opt, mean_val)\n", "enstrophy_model = model\n", "Q = np.tensordot(sindy_opt.PQ_, Xi, axes=([4, 3], [0, 1]))\n", "Q = np.tensordot(mod_matrix, Q, axes=([1], [0]))\n", diff --git a/examples/8_trapping_sindy_examples/von_karman_trapping_extended.py b/examples/8_trapping_sindy_examples/von_karman_trapping_extended.py index cbf2dc71..3d8a1b2f 100644 --- a/examples/8_trapping_sindy_examples/von_karman_trapping_extended.py +++ b/examples/8_trapping_sindy_examples/von_karman_trapping_extended.py @@ -604,7 +604,7 @@ mean_val = np.sqrt(np.sum(mean_val**2)) check_stability(r, Xi, sindy_opt, mean_val, mod_matrix) -check_local_stability(r, Xi, sindy_opt, mean_val, mod_matrix) +check_local_stability(Xi, sindy_opt, mean_val, mod_matrix) enstrophy_model = model Q = np.tensordot(sindy_opt.PQ_, Xi, axes=([4, 3], [0, 1])) Q = np.tensordot(mod_matrix, Q, axes=([1], [0]))