From 556b94c16ebb28814bf0d1ec45bac6737020b61c Mon Sep 17 00:00:00 2001 From: briandesilva Date: Mon, 4 May 2020 14:05:13 -0700 Subject: [PATCH] Polish SINDy docstring --- pysindy/pysindy.py | 14 +++++++++----- 1 file changed, 9 insertions(+), 5 deletions(-) diff --git a/pysindy/pysindy.py b/pysindy/pysindy.py index a550725c5..5a4ec3e12 100644 --- a/pysindy/pysindy.py +++ b/pysindy/pysindy.py @@ -33,25 +33,29 @@ class SINDy(BaseEstimator): ---------- optimizer : optimizer object, optional Optimization method used to fit the SINDy model. This must be an object - that extends the sindy.optimizers.BaseOptimizer class. Default is + extending the ``sindy.optimizers.BaseOptimizer`` class. Default is sequentially thresholded least squares with a threshold of 0.1. feature_library : feature library object, optional + Feature library object used to specify candidate right-hand side features. + This must be an object extending the + ``sindy.feature_library.BaseFeatureLibrary`` class. Default is polynomial features of degree 2. differentiation_method : differentiation object, optional - Method for differentiating the data. This must be an object that - extends the sindy.differentiation_methods.BaseDifferentiation class. + Method for differentiating the data. This must be an object extending + the ``sindy.differentiation_methods.BaseDifferentiation`` class. Default is centered difference. feature_names : list of string, length n_input_features, optional - Names for the input features. If None, will use ['x0','x1',...]. + Names for the input features (e.g. ``['x', 'y', 'z']``). If None, will use + ``['x0', 'x1', ...]``. discrete_time : boolean, optional (default False) If True, dynamical system is treated as a map. Rather than predicting derivatives, the right hand side functions step the system forward by one time step. If False, dynamical system is assumed to be a flow - (right hand side functions predict continuous time derivatives). + (right-hand side functions predict continuous time derivatives). n_jobs : int, optional (default 1) The number of parallel jobs to use when fitting, predicting with, and