diff --git a/examples/19_bayesian_sindy/example.ipynb b/examples/19_bayesian_sindy/example.ipynb index 83a153e4b..00ea8f3f4 100644 --- a/examples/19_bayesian_sindy/example.ipynb +++ b/examples/19_bayesian_sindy/example.ipynb @@ -180,8 +180,8 @@ "name": "stderr", "output_type": "stream", "text": [ - "sample: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2500/2500 [00:02<00:00, 991.89it/s, 63 steps of size 5.70e-02. acc. prob=0.84]\n", - "sample: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2500/2500 [00:01<00:00, 2170.87it/s, 63 steps of size 7.15e-02. acc. prob=0.81]\n" + "sample: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2500/2500 [00:02<00:00, 937.32it/s, 63 steps of size 5.70e-02. acc. prob=0.84]\n", + "sample: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2500/2500 [00:01<00:00, 2029.96it/s, 63 steps of size 7.15e-02. acc. prob=0.81]\n" ] }, { @@ -189,14 +189,19 @@ "text/html": [ "
SINDy(differentiation_method=FiniteDifference(),\n",
        "      feature_library=PolynomialLibrary(), feature_names=['P', 'Q'],\n",
-       "      optimizer=SBR())
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
PolynomialLibrary()
PolynomialLibrary()
SBR(mcmc_kwargs={'num_chains': 2, 'seed': 123}, num_samples=2000,\n",
+       "    num_warmup=500)
SBR(mcmc_kwargs={'num_chains': 2, 'seed': 123}, num_samples=2000,\n",
+       "    num_warmup=500)
" ], "text/plain": [ "SINDy(differentiation_method=FiniteDifference(),\n", " feature_library=PolynomialLibrary(), feature_names=['P', 'Q'],\n", - " optimizer=SBR())" + " optimizer=SBR(mcmc_kwargs={'num_chains': 2, 'seed': 123},\n", + " num_samples=2000, num_warmup=500))" ] }, "execution_count": 8, @@ -206,7 +211,10 @@ ], "source": [ "# initialise the Sparse bayesian Regression optimizer.\n", - "optimizer = ps.optimizers.SBR(seed=sampling_seed, num_warmup=num_warmup, num_samples=num_samples, num_chains=num_chains)\n", + "optimizer = ps.optimizers.SBR(num_warmup=num_warmup,\n", + " num_samples=num_samples,\n", + " mcmc_kwargs={\"seed\": sampling_seed,\n", + " \"num_chains\": num_chains})\n", "\n", "# use the standard polynomial features.\n", "feature_library = ps.feature_library.polynomial_library.PolynomialLibrary(include_interaction=True)\n",