diff --git a/examples/19_bayesian_sindy/example.ipynb b/examples/19_bayesian_sindy/example.ipynb index 83a153e4b..00ea8f3f4 100644 --- a/examples/19_bayesian_sindy/example.ipynb +++ b/examples/19_bayesian_sindy/example.ipynb @@ -180,8 +180,8 @@ "name": "stderr", "output_type": "stream", "text": [ - "sample: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2500/2500 [00:02<00:00, 991.89it/s, 63 steps of size 5.70e-02. acc. prob=0.84]\n", - "sample: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2500/2500 [00:01<00:00, 2170.87it/s, 63 steps of size 7.15e-02. acc. prob=0.81]\n" + "sample: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2500/2500 [00:02<00:00, 937.32it/s, 63 steps of size 5.70e-02. acc. prob=0.84]\n", + "sample: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2500/2500 [00:01<00:00, 2029.96it/s, 63 steps of size 7.15e-02. acc. prob=0.81]\n" ] }, { @@ -189,14 +189,19 @@ "text/html": [ "
SINDy(differentiation_method=FiniteDifference(),\n", " feature_library=PolynomialLibrary(), feature_names=['P', 'Q'],\n", - " optimizer=SBR())In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
SINDy(differentiation_method=FiniteDifference(),\n", + " optimizer=SBR(mcmc_kwargs={'num_chains': 2, 'seed': 123},\n", + " num_samples=2000, num_warmup=500))In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
SINDy(differentiation_method=FiniteDifference(),\n", " feature_library=PolynomialLibrary(), feature_names=['P', 'Q'],\n", - " optimizer=SBR())
PolynomialLibrary()
PolynomialLibrary()
SBR()
SBR()
PolynomialLibrary()
PolynomialLibrary()
SBR(mcmc_kwargs={'num_chains': 2, 'seed': 123}, num_samples=2000,\n", + " num_warmup=500)
SBR(mcmc_kwargs={'num_chains': 2, 'seed': 123}, num_samples=2000,\n", + " num_warmup=500)