forked from Cambricon/mlu-ops
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tensor.h
603 lines (531 loc) · 18.4 KB
/
tensor.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
/*************************************************************************
* Copyright (C) [2022] by Cambricon, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*************************************************************************/
#ifndef CORE_TENSOR_H_
#define CORE_TENSOR_H_
#include <vector>
#include <list>
#include <memory>
#include <queue>
#include <thread> // NOLINT
#include <atomic>
#include <cstring>
#include <string>
#include "mlu_op.h"
#include "core/macros.h"
#include "core/logging.h"
#include "core/type.h"
#define QUEUE_ARRAY_LENGTH 4
struct alignas(64) mluOpTensorStruct {
/** default constructor */
mluOpTensorStruct() = default;
/** copy constructor */
mluOpTensorStruct(mluOpTensorStruct const &other) { *this = other; }
/** move constructor */
mluOpTensorStruct(mluOpTensorStruct const &&) = delete;
/** destructor */
~mluOpTensorStruct() {
if MLUOP_PREDICT_FALSE (dims != normal_dims) {
delete[] dims;
}
if MLUOP_PREDICT_FALSE (strides != normal_strides) {
delete[] strides;
}
}
/** copy assignment operator */
mluOpTensorStruct &operator=(mluOpTensorStruct const &other) {
if (dim > MLUOP_DIM_MAX && (dim < other.dim || other.dim < MLUOP_DIM_MAX)) {
delete[] dims;
delete[] strides;
if (other.dim < MLUOP_DIM_MAX) {
dims = normal_dims;
strides = normal_strides;
} else {
dims = new (std::nothrow) int64_t[dim];
strides = new (std::nothrow) int64_t[dim];
}
}
dim = other.dim;
dtype = other.dtype;
layout = other.layout;
onchip_dtype = other.onchip_dtype;
pointer_mode = other.pointer_mode;
total_element_num = other.total_element_num;
total_tensor_size = other.total_tensor_size;
memcpy(dims, other.dims, sizeof(int64_t) * dim);
memcpy(strides, other.strides, sizeof(int64_t) * dim);
position = other.position;
scale = other.scale;
offset = other.offset;
positions = other.positions;
scales = other.scales;
offsets = other.offsets;
return *this;
}
mluOpTensorStruct &operator=(mluOpTensorStruct const &&other) = delete;
/* methods */
inline bool isSameDims(const mluOpTensorStruct &other) const;
inline bool isSameDims(const mluOpTensorStruct *other) const;
inline bool isCpuScalar() const;
public:
inline mluOpTensorLayout_t getLayout() const { return this->layout; }
inline void setLayout(mluOpTensorLayout_t newLayout) {
this->layout = newLayout;
}
inline uint64_t getTotalTensorSize() const { return this->total_tensor_size; }
inline uint64_t getTotalElementNum() const { return this->total_element_num; }
inline mluOpDataType_t getDtype() const { return this->dtype; }
inline void setDtype(mluOpDataType_t newDtype) { this->dtype = newDtype; }
inline mluOpDataType_t getOnchipDtype() const { return this->onchip_dtype; }
inline void setOnchipDtype(mluOpDataType_t newDtype) {
this->onchip_dtype = newDtype;
}
inline int getDim() const { return this->dim; }
inline int64_t const *getDims() const { return this->dims; }
inline int64_t getDimIndex(size_t index) { return this->dims[index]; }
inline int64_t *getStrides() const { return this->strides; }
inline int64_t getStrideIndex(size_t index) const {
return this->strides[index];
}
inline mluOpPointerMode_t getPointerMode() const {
return this->pointer_mode;
}
inline void setPointerMode(mluOpPointerMode_t new_pointer_mode) {
this->pointer_mode = new_pointer_mode;
}
// Definition of function in tensor.cpp
void setTensorDescriptorDimBase(int dimNb);
mluOpStatus_t setTensorDescriptorZeroDim() {
this->dim = 0;
this->total_element_num = 1;
this->total_tensor_size = mluop::getSizeOfDataType(this->dtype);
return MLUOP_STATUS_SUCCESS;
}
mluOpStatus_t setTensorDescriptor(mluOpTensorLayout_t layout,
mluOpDataType_t dtype, int dimNb,
const int *dimSize);
mluOpStatus_t setTensorDescriptor_v2(mluOpTensorLayout_t layout,
mluOpDataType_t dtype, int dimNb,
const int64_t *dimSize);
mluOpStatus_t setTensorDescriptorDim(int dimNb, const int *dimSize);
mluOpStatus_t setTensorDescriptorDim_v2(int dimNb, const int64_t *dimSize);
mluOpStatus_t resetTensorDescriptor();
mluOpStatus_t setTensorDescriptorEx(mluOpTensorLayout_t layout,
mluOpDataType_t dtype, int dimNb,
const int *dimSize, const int *dimStride);
mluOpStatus_t setTensorDescriptorEx_v2(mluOpTensorLayout_t layout,
mluOpDataType_t dtype, int dimNb,
const int64_t *dimSize,
const int64_t *dimStride);
mluOpStatus_t setTensorDescriptorOnchipDataType(mluOpDataType_t onchip_dtype);
mluOpStatus_t setTensorDescriptorPosition(int position);
mluOpStatus_t setTensorDescriptorPositionAndScale(int position, float scale);
mluOpStatus_t setTensorDescriptorPositionScaleAndOffset(int position,
float scale,
int offset);
mluOpStatus_t setTensorDescriptorPointerMode(mluOpPointerMode_t pointer_mode);
mluOpStatus_t getTensorDescriptorEx(mluOpTensorLayout_t *layout,
mluOpDataType_t *dtype, int *dimNb,
int *dimSize, int *dimStride);
mluOpStatus_t getTensorDescriptorEx_v2(mluOpTensorLayout_t *layout,
mluOpDataType_t *dtype, int *dimNb,
int64_t *dimSize, int64_t *dimStride);
mluOpStatus_t getTensorDescriptor(mluOpTensorLayout_t *layout,
mluOpDataType_t *dtype, int *dimNb,
int *dimSize);
mluOpStatus_t getTensorDescriptor_v2(mluOpTensorLayout_t *layout,
mluOpDataType_t *dtype, int *dimNb,
int64_t *dimSize);
mluOpStatus_t getTensorDescriptorOnchipDataType(
mluOpDataType_t *onchip_dtype);
mluOpStatus_t getTensorDescriptorPointerMode(
mluOpPointerMode_t *pointer_mode);
uint64_t getTensorElementNum() { return this->total_element_num; }
// private:
/* Try to pack and align the struct */
/* ------------------- 64 Bytes - 1 -------------------*/
int64_t normal_dims[MLUOP_DIM_MAX];
/* ------------------- 64 Bytes - 2 -------------------*/
int64_t normal_strides[MLUOP_DIM_MAX];
/* ------------------- 64 Bytes - 3 -------------------*/
/* Offset - 0 */
uint64_t total_element_num = 0;
uint64_t total_tensor_size = 0;
int64_t *dims = normal_dims; // point the normal dims as default
int64_t *strides = normal_strides; // point the normal strides as default
/* Offset - 32 */
int dim = 0;
mluOpDataType_t dtype = MLUOP_DTYPE_FLOAT;
mluOpDataType_t onchip_dtype = MLUOP_DTYPE_INVALID;
mluOpTensorLayout_t layout = MLUOP_LAYOUT_ARRAY;
mluOpPointerMode_t pointer_mode = MLUOP_POINTER_MODE_DEVICE;
/* Offset - 52 */
/* To be removed*/
int position = 0;
float scale = 1;
int offset = 0;
std::vector<int> positions;
std::vector<float> scales;
std::vector<int> offsets;
};
// dim_set(rnn) [layer_num, direction, cap_of_cell]
// dim_offset_base [direction * cap_of_cell, cap_of_cell, 1]
// tensor_set [l1.forward.filter1, ..., l1.forward.filter9,
// l1.backward.filter1, ..., l1.backward.filter9,
// l2.forward.filter1, ..., l2.forward.filter9
// ... ]
struct mluOpTensorSetStruct {
mluOpTensorSetStruct() : tensor_num(0), dim_num(0) {
/* explicit set initial values for document use.
*/
}
~mluOpTensorSetStruct() {
/* please do NOT implement any codes here.
* a state-less struct should not hold any resources.
*/
}
/* methods */
inline size_t getSize() {
CHECK(!this->tensor_set.empty());
size_t tensor_set_size = 0;
for (int i = 0; i < tensor_set.size(); i++) {
tensor_set_size += tensor_set[i]->getTotalTensorSize();
}
return tensor_set_size;
}
// tensor set (eg: rnn)
inline int getIndex(const int tensorIndex[]) const {
int index = 0;
for (int i = 0; i < this->dim_set.size(); i++) {
index += tensorIndex[i] * this->dim_offset_base[i];
}
return index;
}
inline size_t getOffset(const int tensorIndex[]) {
int64_t offset = 0;
int index = this->getIndex(tensorIndex);
for (int i = 0; i < index; i++) {
offset += tensor_set[i]->getTotalTensorSize();
}
data_offset[index] = offset;
return offset;
}
inline mluOpTensorDescriptor_t getTensor(const int tensorIndex[]) const {
auto index = this->getIndex(tensorIndex);
auto ts = this->tensor_set[index].get();
return ts;
}
inline mluOpDataType_t getDatatype() const {
CHECK(!this->tensor_set.empty());
return this->tensor_set[0]->getDtype();
}
inline mluOpTensorLayout_t getLayout() const {
CHECK(!this->tensor_set.empty());
return this->tensor_set[0]->getLayout();
}
inline void checkDataOffset() const {
auto data_offset_array = data_offset.size();
for (int i = 0; i < data_offset_array; i++) {
if (i != 0 && data_offset[i] == 0) {
LOG(ERROR) << "tensorSet's data not set, index:" << i << " of "
<< tensor_num;
}
}
}
inline void dataOffsetInit(int set_size) {
this->data_offset.resize(set_size);
}
inline std::vector<size_t> getDataOffsets() {
if (data_offset.size() == 0) {
return data_offset;
}
int offset = 0;
data_offset[0] = offset;
for (int i = 0; i < tensor_num - 1; i++) {
offset += tensor_set[i]->getTotalTensorSize();
data_offset[i + 1] = offset;
}
return data_offset;
}
/* struct */
int tensor_num = 0;
int dim_num = 0; // dimension number
std::vector<int> dim_set; // the number for each dimension
std::vector<int> dim_offset_base; // offset for each dimension
std::vector<std::shared_ptr<mluOpTensorStruct>>
tensor_set; // vector of tensorDesc
std::vector<std::vector<int>> user_indices; // releated tensor's index
std::vector<size_t> data_offset; // data's offset
};
struct mluOpSeqDataStruct {
mluOpSeqDataStruct()
: dim(0),
dtype(MLUOP_DTYPE_FLOAT),
layout(MLUOP_SEQDATA_NBTC),
position(0),
scale(1.0),
offset(0),
padding_fill(nullptr) {
/* explicit set initial values for document use.
*/
}
~mluOpSeqDataStruct() {
/* please do NOT implement any codes here.
* a state-less struct should not hold any resources.
*/
}
/* methods */
inline mluOpStatus_t seqDataElementsNumber(size_t &elements) const {
uint64_t elements_counter = 1;
for (size_t i = 0; i < dim; ++i) {
elements_counter *= dims[i];
}
elements = elements_counter;
return MLUOP_STATUS_SUCCESS;
}
inline int getSeqenceArrayBytes() const {
int seq_array_size = 0;
if (!seq_length.empty()) {
seq_array_size = seq_length.size() * sizeof(int);
}
return seq_array_size;
}
/* struct */
int dim;
std::vector<int64_t> dims;
// int* dims;
mluOpDataType_t dtype;
mluOpDataType_t onchip_dtype;
mluOpSeqDataLayout_t layout;
int64_t seq_length_size;
std::vector<int64_t> seq_length;
int position;
float scale;
int offset;
void *padding_fill;
};
inline int mluOpDataTypeBytes(const mluOpDataType_t dt) {
return mluop::getSizeOfDataType(dt);
}
inline int64_t mluOpGetTensordimN(const mluOpTensorDescriptor_t desc) {
switch (desc->getLayout()) {
case MLUOP_LAYOUT_NCHW:
case MLUOP_LAYOUT_NHWC:
case MLUOP_LAYOUT_NDHWC:
case MLUOP_LAYOUT_NLC:
case MLUOP_LAYOUT_NC:
case MLUOP_LAYOUT_NCL:
case MLUOP_LAYOUT_NCDHW:
return desc->getDimIndex(0);
case MLUOP_LAYOUT_TNC:
return desc->getDimIndex(1);
case MLUOP_LAYOUT_HWCN:
return desc->getDimIndex(3);
default:
LOG(ERROR)
<< "Failed to call dimN, illegal layout in TensorDescriptor.\n";
}
return 0;
}
inline int64_t mluOpGetTensordimD(const mluOpTensorDescriptor_t desc) {
switch (desc->getLayout()) {
case MLUOP_LAYOUT_NDHWC:
return desc->getDimIndex(1);
case MLUOP_LAYOUT_NCDHW:
return desc->getDimIndex(2);
default:
LOG(ERROR)
<< "Failed to call dimD, illegal layout in TensorDescriptor.\n";
}
return 0;
}
inline int64_t mluOpGetTensordimC(const mluOpTensorDescriptor_t desc) {
switch (desc->getLayout()) {
case MLUOP_LAYOUT_NCHW:
case MLUOP_LAYOUT_NCDHW:
case MLUOP_LAYOUT_NC:
case MLUOP_LAYOUT_NCL:
return desc->getDimIndex(1);
case MLUOP_LAYOUT_HWCN:
case MLUOP_LAYOUT_NLC:
case MLUOP_LAYOUT_NTC:
case MLUOP_LAYOUT_TNC:
return desc->getDimIndex(2);
case MLUOP_LAYOUT_NHWC:
return desc->getDimIndex(3);
case MLUOP_LAYOUT_NDHWC:
return desc->getDimIndex(4);
default:
LOG(ERROR)
<< "Failed to call dimC, illegal layout in TensorDescriptor.\n";
}
return 0;
}
inline int64_t mluOpGetTensordimH(const mluOpTensorDescriptor_t desc) {
switch (desc->getLayout()) {
case MLUOP_LAYOUT_HWCN:
return desc->getDimIndex(0);
case MLUOP_LAYOUT_NHWC:
return desc->getDimIndex(1);
case MLUOP_LAYOUT_NCHW:
case MLUOP_LAYOUT_NDHWC:
return desc->getDimIndex(2);
case MLUOP_LAYOUT_NCDHW:
return desc->getDimIndex(3);
default:
LOG(ERROR)
<< "Failed to call dimH, illegal layout in TensorDescriptor.\n";
}
return 0;
}
inline int64_t mluOpGetTensordimW(const mluOpTensorDescriptor_t desc) {
switch (desc->getLayout()) {
case MLUOP_LAYOUT_HWCN:
return desc->getDimIndex(1);
case MLUOP_LAYOUT_NHWC:
return desc->getDimIndex(2);
case MLUOP_LAYOUT_NCHW:
case MLUOP_LAYOUT_NDHWC:
return desc->getDimIndex(3);
case MLUOP_LAYOUT_NCDHW:
return desc->getDimIndex(4);
default:
LOG(ERROR)
<< "Failed to call dimW, illegal layout in TensorDescriptor.\n";
}
return 0;
}
uint64_t mluOpGetSeqDataElementNum(mluOpSeqDataDescriptor_t desc);
inline int64_t mluOpGetSeqDataDimN(const mluOpSeqDataDescriptor_t desc) {
switch (desc->layout) {
case MLUOP_SEQDATA_NBTC:
case MLUOP_SEQDATA_NTBC:
case MLUOP_SEQDATA_NC:
case MLUOP_SEQDATA_NTC:
return desc->dims[0];
case MLUOP_SEQDATA_BNTC:
case MLUOP_SEQDATA_TNBC:
case MLUOP_SEQDATA_TNC:
case MLUOP_SEQDATA_TNC_PACKED:
case MLUOP_SEQDATA_TN:
return desc->dims[1];
case MLUOP_SEQDATA_BTNC:
case MLUOP_SEQDATA_TBNC:
return desc->dims[2];
default:
LOG(ERROR)
<< "Failed to call dimN, illegal layout in SeqDataDescriptor.\n";
}
return 0;
}
inline int64_t mluOpGetSeqDataDimB(const mluOpSeqDataDescriptor_t desc) {
switch (desc->layout) {
case MLUOP_SEQDATA_BNTC:
case MLUOP_SEQDATA_BTNC:
return desc->dims[0];
case MLUOP_SEQDATA_TBNC:
case MLUOP_SEQDATA_NBTC:
return desc->dims[1];
case MLUOP_SEQDATA_NTBC:
case MLUOP_SEQDATA_TNBC:
return desc->dims[2];
default:
LOG(ERROR)
<< "Failed to call dimB, illegal layout in SeqDataDescriptor.\n";
}
return 0;
}
inline int64_t mluOpGetSeqDataDimT(const mluOpSeqDataDescriptor_t desc) {
switch (desc->layout) {
case MLUOP_SEQDATA_TNC:
case MLUOP_SEQDATA_TNC_PACKED:
case MLUOP_SEQDATA_TNBC:
case MLUOP_SEQDATA_TBNC:
case MLUOP_SEQDATA_TN:
return desc->dims[0];
case MLUOP_SEQDATA_NTC:
case MLUOP_SEQDATA_NTBC:
case MLUOP_SEQDATA_BTNC:
return desc->dims[1];
case MLUOP_SEQDATA_NBTC:
case MLUOP_SEQDATA_BNTC:
return desc->dims[2];
default:
LOG(ERROR)
<< "Failed to call dimT, illegal layout in SeqDataDescriptor.\n";
}
return 0;
}
inline int64_t mluOpGetSeqDataDimC(const mluOpSeqDataDescriptor_t desc) {
switch (desc->layout) {
case MLUOP_SEQDATA_TNC:
case MLUOP_SEQDATA_TNC_PACKED:
case MLUOP_SEQDATA_NTC:
return desc->dims[2];
case MLUOP_SEQDATA_NC:
return desc->dims[1];
case MLUOP_SEQDATA_TNBC:
case MLUOP_SEQDATA_TBNC:
case MLUOP_SEQDATA_NBTC:
case MLUOP_SEQDATA_NTBC:
case MLUOP_SEQDATA_BNTC:
case MLUOP_SEQDATA_BTNC:
return desc->dims[3];
default:
LOG(ERROR)
<< "Failed to call dimC, illegal layout in SeqDataDescriptor.\n";
}
return 0;
}
inline uint64_t shapeStrideCount(const mluOpTensorDescriptor_t desc) {
uint64_t total = 1;
for (int i = 0; i < desc->getDim(); ++i) {
if (desc->getDimIndex(i) == 0) {
total = 0;
break;
}
total += (desc->getDimIndex(i) - 1) * desc->getStrideIndex(i);
}
return total;
}
inline bool mluOpTensorStruct::isSameDims(
const mluOpTensorStruct &other) const {
if (dim == other.dim) {
if (0 == memcmp(dims, other.dims, dim * sizeof(*dims))) {
return true;
}
}
return false;
}
inline bool mluOpTensorStruct::isSameDims(
const mluOpTensorStruct *other) const {
return isSameDims(*other);
}
inline bool mluOpTensorStruct::isCpuScalar() const {
if (dim == 0 && pointer_mode == MLUOP_POINTER_MODE_HOST &&
total_element_num == 1) {
return true;
}
return false;
}
// Attention: Do not put operator data structures in this header file.
#endif // CORE_TENSOR_H_