-
Notifications
You must be signed in to change notification settings - Fork 37
/
tf_api.h
1576 lines (1394 loc) · 74 KB
/
tf_api.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#define FFI_SCOPE "TensorFlow"
#define FFI_LIB "libtensorflow.so"
/* Following the standard c_api.h with preprocessor directives removed */
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// --------------------------------------------------------------------------
// C API for TensorFlow.
//
// The API leans towards simplicity and uniformity instead of convenience
// since most usage will be by language specific wrappers.
//
// Conventions:
// * We use the prefix TF_ for everything in the API.
// * Objects are always passed around as pointers to opaque structs
// and these structs are allocated/deallocated via the API.
// * TF_Status holds error information. It is an object type
// and therefore is passed around as a pointer to an opaque
// struct as mentioned above.
// * Every call that has a TF_Status* argument clears it on success
// and fills it with error info on failure.
// * unsigned char is used for booleans (instead of the 'bool' type).
// In C++ bool is a keyword while in C99 bool is a macro defined
// in stdbool.h. It is possible for the two to be inconsistent.
// For example, neither the C99 nor the C++11 standard force a byte
// size on the bool type, so the macro defined in stdbool.h could
// be inconsistent with the bool keyword in C++. Thus, the use
// of stdbool.h is avoided and unsigned char is used instead.
// * size_t is used to represent byte sizes of objects that are
// materialized in the address space of the calling process.
// * int is used as an index into arrays.
//
// Questions left to address:
// * Might at some point need a way for callers to provide their own Env.
// * Maybe add TF_TensorShape that encapsulates dimension info.
//
// Design decisions made:
// * Backing store for tensor memory has an associated deallocation
// function. This deallocation function will point to client code
// for tensors populated by the client. So the client can do things
// like shadowing a numpy array.
// * We do not provide TF_OK since it is not strictly necessary and we
// are not optimizing for convenience.
// * We make assumption that one session has one graph. This should be
// fine since we have the ability to run sub-graphs.
// * We could allow NULL for some arguments (e.g., NULL options arg).
// However since convenience is not a primary goal, we don't do this.
// * Devices are not in this API. Instead, they are created/used internally
// and the API just provides high level controls over the number of
// devices of each type.
// --------------------------------------------------------------------------
// TF_Version returns a string describing version information of the
// TensorFlow library. TensorFlow using semantic versioning.
extern const char* TF_Version();
// --------------------------------------------------------------------------
// TF_DataType holds the type for a scalar value. E.g., one slot in a tensor.
// The enum values here are identical to corresponding values in types.proto.
typedef enum TF_DataType {
TF_FLOAT = 1,
TF_DOUBLE = 2,
TF_INT32 = 3, // Int32 tensors are always in 'host' memory.
TF_UINT8 = 4,
TF_INT16 = 5,
TF_INT8 = 6,
TF_STRING = 7,
TF_COMPLEX64 = 8, // Single-precision complex
TF_COMPLEX = 8, // Old identifier kept for API backwards compatibility
TF_INT64 = 9,
TF_BOOL = 10,
TF_QINT8 = 11, // Quantized int8
TF_QUINT8 = 12, // Quantized uint8
TF_QINT32 = 13, // Quantized int32
TF_BFLOAT16 = 14, // Float32 truncated to 16 bits. Only for cast ops.
TF_QINT16 = 15, // Quantized int16
TF_QUINT16 = 16, // Quantized uint16
TF_UINT16 = 17,
TF_COMPLEX128 = 18, // Double-precision complex
TF_HALF = 19,
TF_RESOURCE = 20,
TF_VARIANT = 21,
TF_UINT32 = 22,
TF_UINT64 = 23,
} TF_DataType;
// TF_DataTypeSize returns the sizeof() for the underlying type corresponding
// to the given TF_DataType enum value. Returns 0 for variable length types
// (eg. TF_STRING) or on failure.
extern size_t TF_DataTypeSize(TF_DataType dt);
// --------------------------------------------------------------------------
// TF_Code holds an error code. The enum values here are identical to
// corresponding values in error_codes.proto.
typedef enum TF_Code {
TF_OK = 0,
TF_CANCELLED = 1,
TF_UNKNOWN = 2,
TF_INVALID_ARGUMENT = 3,
TF_DEADLINE_EXCEEDED = 4,
TF_NOT_FOUND = 5,
TF_ALREADY_EXISTS = 6,
TF_PERMISSION_DENIED = 7,
TF_UNAUTHENTICATED = 16,
TF_RESOURCE_EXHAUSTED = 8,
TF_FAILED_PRECONDITION = 9,
TF_ABORTED = 10,
TF_OUT_OF_RANGE = 11,
TF_UNIMPLEMENTED = 12,
TF_INTERNAL = 13,
TF_UNAVAILABLE = 14,
TF_DATA_LOSS = 15,
} TF_Code;
// --------------------------------------------------------------------------
// TF_Status holds error information. It either has an OK code, or
// else an error code with an associated error message.
typedef struct TF_Status TF_Status;
// Return a new status object.
extern TF_Status* TF_NewStatus();
// Delete a previously created status object.
extern void TF_DeleteStatus(TF_Status*);
// Record <code, msg> in *s. Any previous information is lost.
// A common use is to clear a status: TF_SetStatus(s, TF_OK, "");
extern void TF_SetStatus(TF_Status* s, TF_Code code,
const char* msg);
// Return the code record in *s.
extern TF_Code TF_GetCode(const TF_Status* s);
// Return a pointer to the (null-terminated) error message in *s. The
// return value points to memory that is only usable until the next
// mutation to *s. Always returns an empty string if TF_GetCode(s) is
// TF_OK.
extern const char* TF_Message(const TF_Status* s);
// --------------------------------------------------------------------------
// TF_Buffer holds a pointer to a block of data and its associated length.
// Typically, the data consists of a serialized protocol buffer, but other data
// may also be held in a buffer.
//
// By default, TF_Buffer itself does not do any memory management of the
// pointed-to block. If need be, users of this struct should specify how to
// deallocate the block by setting the `data_deallocator` function pointer.
typedef struct TF_Buffer {
const void* data;
size_t length;
void (*data_deallocator)(void* data, size_t length);
} TF_Buffer;
// Makes a copy of the input and sets an appropriate deallocator. Useful for
// passing in read-only, input protobufs.
extern TF_Buffer* TF_NewBufferFromString(const void* proto,
size_t proto_len);
// Useful for passing *out* a protobuf.
extern TF_Buffer* TF_NewBuffer();
extern void TF_DeleteBuffer(TF_Buffer*);
extern TF_Buffer TF_GetBuffer(TF_Buffer* buffer);
// --------------------------------------------------------------------------
// TF_Tensor holds a multi-dimensional array of elements of a single data type.
// For all types other than TF_STRING, the data buffer stores elements
// in row major order. E.g. if data is treated as a vector of TF_DataType:
//
// element 0: index (0, ..., 0)
// element 1: index (0, ..., 1)
// ...
//
// The format for TF_STRING tensors is:
// start_offset: array[uint64]
// data: byte[...]
//
// The string length (as a varint), followed by the contents of the string
// is encoded at data[start_offset[i]]]. TF_StringEncode and TF_StringDecode
// facilitate this encoding.
typedef struct TF_Tensor TF_Tensor;
// Return a new tensor that holds the bytes data[0,len-1].
//
// The data will be deallocated by a subsequent call to TF_DeleteTensor via:
// (*deallocator)(data, len, deallocator_arg)
// Clients must provide a custom deallocator function so they can pass in
// memory managed by something like numpy.
//
// May return NULL (and invoke the deallocator) if the provided data buffer
// (data, len) is inconsistent with a tensor of the given TF_DataType
// and the shape specified by (dima, num_dims).
extern TF_Tensor* TF_NewTensor(
TF_DataType, const int64_t* dims, int num_dims, void* data, size_t len,
void (*deallocator)(void* data, size_t len, void* arg),
void* deallocator_arg);
// Allocate and return a new Tensor.
//
// This function is an alternative to TF_NewTensor and should be used when
// memory is allocated to pass the Tensor to the C API. The allocated memory
// satisfies TensorFlow's memory alignment preferences and should be preferred
// over calling malloc and free.
//
// The caller must set the Tensor values by writing them to the pointer returned
// by TF_TensorData with length TF_TensorByteSize.
extern TF_Tensor* TF_AllocateTensor(TF_DataType,
const int64_t* dims,
int num_dims, size_t len);
// Deletes `tensor` and returns a new TF_Tensor with the same content if
// possible. Returns nullptr and leaves `tensor` untouched if not.
extern TF_Tensor* TF_TensorMaybeMove(TF_Tensor* tensor);
// Destroy a tensor.
extern void TF_DeleteTensor(TF_Tensor*);
// Return the type of a tensor element.
extern TF_DataType TF_TensorType(const TF_Tensor*);
// Return the number of dimensions that the tensor has.
extern int TF_NumDims(const TF_Tensor*);
// Return the length of the tensor in the "dim_index" dimension.
// REQUIRES: 0 <= dim_index < TF_NumDims(tensor)
extern int64_t TF_Dim(const TF_Tensor* tensor, int dim_index);
// Return the size of the underlying data in bytes.
extern size_t TF_TensorByteSize(const TF_Tensor*);
// Return a pointer to the underlying data buffer.
extern void* TF_TensorData(const TF_Tensor*);
// --------------------------------------------------------------------------
// Encode the string `src` (`src_len` bytes long) into `dst` in the format
// required by TF_STRING tensors. Does not write to memory more than `dst_len`
// bytes beyond `*dst`. `dst_len` should be at least
// TF_StringEncodedSize(src_len).
//
// On success returns the size in bytes of the encoded string.
// Returns an error into `status` otherwise.
extern size_t TF_StringEncode(const char* src, size_t src_len,
char* dst, size_t dst_len,
TF_Status* status);
// Decode a string encoded using TF_StringEncode.
//
// On success, sets `*dst` to the start of the decoded string and `*dst_len` to
// its length. Returns the number of bytes starting at `src` consumed while
// decoding. `*dst` points to memory within the encoded buffer. On failure,
// `*dst` and `*dst_len` are undefined and an error is set in `status`.
//
// Does not read memory more than `src_len` bytes beyond `src`.
extern size_t TF_StringDecode(const char* src, size_t src_len,
const char** dst, size_t* dst_len,
TF_Status* status);
// Return the size in bytes required to encode a string `len` bytes long into a
// TF_STRING tensor.
extern size_t TF_StringEncodedSize(size_t len);
// --------------------------------------------------------------------------
// TF_SessionOptions holds options that can be passed during session creation.
typedef struct TF_SessionOptions TF_SessionOptions;
// Return a new options object.
extern TF_SessionOptions* TF_NewSessionOptions();
// Set the target in TF_SessionOptions.options.
// target can be empty, a single entry, or a comma separated list of entries.
// Each entry is in one of the following formats :
// "local"
// ip:port
// host:port
extern void TF_SetTarget(TF_SessionOptions* options,
const char* target);
// Set the config in TF_SessionOptions.options.
// config should be a serialized tensorflow.ConfigProto proto.
// If config was not parsed successfully as a ConfigProto, record the
// error information in *status.
extern void TF_SetConfig(TF_SessionOptions* options,
const void* proto, size_t proto_len,
TF_Status* status);
// Destroy an options object.
extern void TF_DeleteSessionOptions(TF_SessionOptions*);
// TODO(jeff,sanjay):
// - export functions to set Config fields
// --------------------------------------------------------------------------
// The new graph construction API, still under development.
// Represents a computation graph. Graphs may be shared between sessions.
// Graphs are thread-safe when used as directed below.
typedef struct TF_Graph TF_Graph;
// Return a new graph object.
extern TF_Graph* TF_NewGraph();
// Destroy an options object. Graph will be deleted once no more
// TFSession's are referencing it.
extern void TF_DeleteGraph(TF_Graph*);
// Operation being built. The underlying graph must outlive this.
typedef struct TF_OperationDescription TF_OperationDescription;
// Operation that has been added to the graph. Valid until the graph is
// deleted -- in particular adding a new operation to the graph does not
// invalidate old TF_Operation* pointers.
typedef struct TF_Operation TF_Operation;
// Represents a specific input of an operation.
typedef struct TF_Input {
TF_Operation* oper;
int index; // The index of the input within oper.
} TF_Input;
// Represents a specific output of an operation.
typedef struct TF_Output {
TF_Operation* oper;
int index; // The index of the output within oper.
} TF_Output;
// TF_Function is a grouping of operations with defined inputs and outputs.
// Once created and added to graphs, functions can be invoked by creating an
// operation whose operation type matches the function name.
typedef struct TF_Function TF_Function;
// Function definition options. TODO(iga): Define and implement
typedef struct TF_FunctionOptions TF_FunctionOptions;
// Sets the shape of the Tensor referenced by `output` in `graph` to
// the shape described by `dims` and `num_dims`.
//
// If the number of dimensions is unknown, `num_dims` must be set to
// -1 and `dims` can be null. If a dimension is unknown, the
// corresponding entry in the `dims` array must be -1.
//
// This does not overwrite the existing shape associated with `output`,
// but merges the input shape with the existing shape. For example,
// setting a shape of [-1, 2] with an existing shape [2, -1] would set
// a final shape of [2, 2] based on shape merging semantics.
//
// Returns an error into `status` if:
// * `output` is not in `graph`.
// * An invalid shape is being set (e.g., the shape being set
// is incompatible with the existing shape).
extern void TF_GraphSetTensorShape(TF_Graph* graph,
TF_Output output,
const int64_t* dims,
const int num_dims,
TF_Status* status);
// Returns the number of dimensions of the Tensor referenced by `output`
// in `graph`.
//
// If the number of dimensions in the shape is unknown, returns -1.
//
// Returns an error into `status` if:
// * `output` is not in `graph`.
extern int TF_GraphGetTensorNumDims(TF_Graph* graph,
TF_Output output,
TF_Status* status);
// Returns the shape of the Tensor referenced by `output` in `graph`
// into `dims`. `dims` must be an array large enough to hold `num_dims`
// entries (e.g., the return value of TF_GraphGetTensorNumDims).
//
// If the number of dimensions in the shape is unknown or the shape is
// a scalar, `dims` will remain untouched. Otherwise, each element of
// `dims` will be set corresponding to the size of the dimension. An
// unknown dimension is represented by `-1`.
//
// Returns an error into `status` if:
// * `output` is not in `graph`.
// * `num_dims` does not match the actual number of dimensions.
extern void TF_GraphGetTensorShape(TF_Graph* graph,
TF_Output output,
int64_t* dims, int num_dims,
TF_Status* status);
// Operation will only be added to *graph when TF_FinishOperation() is
// called (assuming TF_FinishOperation() does not return an error).
// *graph must not be deleted until after TF_FinishOperation() is
// called.
extern TF_OperationDescription* TF_NewOperation(
TF_Graph* graph, const char* op_type, const char* oper_name);
// Specify the device for `desc`. Defaults to empty, meaning unconstrained.
extern void TF_SetDevice(TF_OperationDescription* desc,
const char* device);
// The calls to TF_AddInput and TF_AddInputList must match (in number,
// order, and type) the op declaration. For example, the "Concat" op
// has registration:
// REGISTER_OP("Concat")
// .Input("concat_dim: int32")
// .Input("values: N * T")
// .Output("output: T")
// .Attr("N: int >= 2")
// .Attr("T: type");
// that defines two inputs, "concat_dim" and "values" (in that order).
// You must use TF_AddInput() for the first input (since it takes a
// single tensor), and TF_AddInputList() for the second input (since
// it takes a list, even if you were to pass a list with a single
// tensor), as in:
// TF_OperationDescription* desc = TF_NewOperation(graph, "Concat", "c");
// TF_Output concat_dim_input = {...};
// TF_AddInput(desc, concat_dim_input);
// TF_Output values_inputs[5] = {{...}, ..., {...}};
// TF_AddInputList(desc, values_inputs, 5);
// For inputs that take a single tensor.
extern void TF_AddInput(TF_OperationDescription* desc,
TF_Output input);
// For inputs that take a list of tensors.
// inputs must point to TF_Output[num_inputs].
extern void TF_AddInputList(TF_OperationDescription* desc,
const TF_Output* inputs,
int num_inputs);
// Call once per control input to `desc`.
extern void TF_AddControlInput(TF_OperationDescription* desc,
TF_Operation* input);
// Request that `desc` be co-located on the device where `op`
// is placed.
//
// Use of this is discouraged since the implementation of device placement is
// subject to change. Primarily intended for internal libraries
extern void TF_ColocateWith(TF_OperationDescription* desc,
TF_Operation* op);
// Call some TF_SetAttr*() function for every attr that is not
// inferred from an input and doesn't have a default value you wish to
// keep.
// `value` must point to a string of length `length` bytes.
extern void TF_SetAttrString(TF_OperationDescription* desc,
const char* attr_name,
const void* value, size_t length);
// `values` and `lengths` each must have lengths `num_values`.
// `values[i]` must point to a string of length `lengths[i]` bytes.
extern void TF_SetAttrStringList(TF_OperationDescription* desc,
const char* attr_name,
const void* const* values,
const size_t* lengths,
int num_values);
extern void TF_SetAttrInt(TF_OperationDescription* desc,
const char* attr_name, int64_t value);
extern void TF_SetAttrIntList(TF_OperationDescription* desc,
const char* attr_name,
const int64_t* values,
int num_values);
extern void TF_SetAttrFloat(TF_OperationDescription* desc,
const char* attr_name, float value);
extern void TF_SetAttrFloatList(TF_OperationDescription* desc,
const char* attr_name,
const float* values,
int num_values);
extern void TF_SetAttrBool(TF_OperationDescription* desc,
const char* attr_name,
unsigned char value);
extern void TF_SetAttrBoolList(TF_OperationDescription* desc,
const char* attr_name,
const unsigned char* values,
int num_values);
extern void TF_SetAttrType(TF_OperationDescription* desc,
const char* attr_name,
TF_DataType value);
extern void TF_SetAttrTypeList(TF_OperationDescription* desc,
const char* attr_name,
const TF_DataType* values,
int num_values);
// Set a 'func' attribute to the specified name.
// `value` must point to a string of length `length` bytes.
extern void TF_SetAttrFuncName(TF_OperationDescription* desc,
const char* attr_name,
const char* value, size_t length);
// Set `num_dims` to -1 to represent "unknown rank". Otherwise,
// `dims` points to an array of length `num_dims`. `dims[i]` must be
// >= -1, with -1 meaning "unknown dimension".
extern void TF_SetAttrShape(TF_OperationDescription* desc,
const char* attr_name,
const int64_t* dims, int num_dims);
// `dims` and `num_dims` must point to arrays of length `num_shapes`.
// Set `num_dims[i]` to -1 to represent "unknown rank". Otherwise,
// `dims[i]` points to an array of length `num_dims[i]`. `dims[i][j]`
// must be >= -1, with -1 meaning "unknown dimension".
extern void TF_SetAttrShapeList(TF_OperationDescription* desc,
const char* attr_name,
const int64_t* const* dims,
const int* num_dims,
int num_shapes);
// `proto` must point to an array of `proto_len` bytes representing a
// binary-serialized TensorShapeProto.
extern void TF_SetAttrTensorShapeProto(
TF_OperationDescription* desc, const char* attr_name, const void* proto,
size_t proto_len, TF_Status* status);
// `protos` and `proto_lens` must point to arrays of length `num_shapes`.
// `protos[i]` must point to an array of `proto_lens[i]` bytes
// representing a binary-serialized TensorShapeProto.
extern void TF_SetAttrTensorShapeProtoList(
TF_OperationDescription* desc, const char* attr_name,
const void* const* protos, const size_t* proto_lens, int num_shapes,
TF_Status* status);
extern void TF_SetAttrTensor(TF_OperationDescription* desc,
const char* attr_name,
TF_Tensor* value,
TF_Status* status);
extern void TF_SetAttrTensorList(TF_OperationDescription* desc,
const char* attr_name,
TF_Tensor* const* values,
int num_values,
TF_Status* status);
// `proto` should point to a sequence of bytes of length `proto_len`
// representing a binary serialization of an AttrValue protocol
// buffer.
extern void TF_SetAttrValueProto(TF_OperationDescription* desc,
const char* attr_name,
const void* proto,
size_t proto_len,
TF_Status* status);
// If this function succeeds:
// * *status is set to an OK value,
// * a TF_Operation is added to the graph,
// * a non-null value pointing to the added operation is returned --
// this value is valid until the underlying graph is deleted.
// Otherwise:
// * *status is set to a non-OK value,
// * the graph is not modified,
// * a null value is returned.
// In either case, it deletes `desc`.
extern TF_Operation* TF_FinishOperation(
TF_OperationDescription* desc, TF_Status* status);
// TF_Operation functions. Operations are immutable once created, so
// these are all query functions.
extern const char* TF_OperationName(TF_Operation* oper);
extern const char* TF_OperationOpType(TF_Operation* oper);
extern const char* TF_OperationDevice(TF_Operation* oper);
extern int TF_OperationNumOutputs(TF_Operation* oper);
extern TF_DataType TF_OperationOutputType(TF_Output oper_out);
extern int TF_OperationOutputListLength(TF_Operation* oper,
const char* arg_name,
TF_Status* status);
extern int TF_OperationNumInputs(TF_Operation* oper);
extern TF_DataType TF_OperationInputType(TF_Input oper_in);
extern int TF_OperationInputListLength(TF_Operation* oper,
const char* arg_name,
TF_Status* status);
// In this code:
// TF_Output producer = TF_OperationInput(consumer);
// There is an edge from producer.oper's output (given by
// producer.index) to consumer.oper's input (given by consumer.index).
extern TF_Output TF_OperationInput(TF_Input oper_in);
// Get the number of current consumers of a specific output of an
// operation. Note that this number can change when new operations
// are added to the graph.
extern int TF_OperationOutputNumConsumers(TF_Output oper_out);
// Get list of all current consumers of a specific output of an
// operation. `consumers` must point to an array of length at least
// `max_consumers` (ideally set to
// TF_OperationOutputNumConsumers(oper_out)). Beware that a concurrent
// modification of the graph can increase the number of consumers of
// an operation. Returns the number of output consumers (should match
// TF_OperationOutputNumConsumers(oper_out)).
extern int TF_OperationOutputConsumers(TF_Output oper_out,
TF_Input* consumers,
int max_consumers);
// Get the number of control inputs to an operation.
extern int TF_OperationNumControlInputs(TF_Operation* oper);
// Get list of all control inputs to an operation. `control_inputs` must
// point to an array of length `max_control_inputs` (ideally set to
// TF_OperationNumControlInputs(oper)). Returns the number of control
// inputs (should match TF_OperationNumControlInputs(oper)).
extern int TF_OperationGetControlInputs(
TF_Operation* oper, TF_Operation** control_inputs, int max_control_inputs);
// Get the number of operations that have `*oper` as a control input.
// Note that this number can change when new operations are added to
// the graph.
extern int TF_OperationNumControlOutputs(TF_Operation* oper);
// Get the list of operations that have `*oper` as a control input.
// `control_outputs` must point to an array of length at least
// `max_control_outputs` (ideally set to
// TF_OperationNumControlOutputs(oper)). Beware that a concurrent
// modification of the graph can increase the number of control
// outputs. Returns the number of control outputs (should match
// TF_OperationNumControlOutputs(oper)).
extern int TF_OperationGetControlOutputs(
TF_Operation* oper, TF_Operation** control_outputs,
int max_control_outputs);
// TF_AttrType describes the type of the value of an attribute on an operation.
typedef enum TF_AttrType {
TF_ATTR_STRING = 0,
TF_ATTR_INT = 1,
TF_ATTR_FLOAT = 2,
TF_ATTR_BOOL = 3,
TF_ATTR_TYPE = 4,
TF_ATTR_SHAPE = 5,
TF_ATTR_TENSOR = 6,
TF_ATTR_PLACEHOLDER = 7,
TF_ATTR_FUNC = 8,
} TF_AttrType;
// TF_AttrMetadata describes the value of an attribute on an operation.
typedef struct TF_AttrMetadata {
// A boolean: 1 if the attribute value is a list, 0 otherwise.
unsigned char is_list;
// Length of the list if is_list is true. Undefined otherwise.
int64_t list_size;
// Type of elements of the list if is_list != 0.
// Type of the single value stored in the attribute if is_list == 0.
TF_AttrType type;
// Total size the attribute value.
// The units of total_size depend on is_list and type.
// (1) If type == TF_ATTR_STRING and is_list == 0
// then total_size is the byte size of the string
// valued attribute.
// (2) If type == TF_ATTR_STRING and is_list == 1
// then total_size is the cumulative byte size
// of all the strings in the list.
// (3) If type == TF_ATTR_SHAPE and is_list == 0
// then total_size is the number of dimensions
// of the shape valued attribute, or -1
// if its rank is unknown.
// (4) If type == TF_ATTR_SHAPE and is_list == 1
// then total_size is the cumulative number
// of dimensions of all shapes in the list.
// (5) Otherwise, total_size is undefined.
int64_t total_size;
} TF_AttrMetadata;
// Returns metadata about the value of the attribute `attr_name` of `oper`.
extern TF_AttrMetadata TF_OperationGetAttrMetadata(
TF_Operation* oper, const char* attr_name, TF_Status* status);
// Fills in `value` with the value of the attribute `attr_name`. `value` must
// point to an array of length at least `max_length` (ideally set to
// TF_AttrMetadata.total_size from TF_OperationGetAttrMetadata(oper,
// attr_name)).
extern void TF_OperationGetAttrString(TF_Operation* oper,
const char* attr_name,
void* value,
size_t max_length,
TF_Status* status);
// Get the list of strings in the value of the attribute `attr_name`. Fills in
// `values` and `lengths`, each of which must point to an array of length at
// least `max_values`.
//
// The elements of values will point to addresses in `storage` which must be at
// least `storage_size` bytes in length. Ideally, max_values would be set to
// TF_AttrMetadata.list_size and `storage` would be at least
// TF_AttrMetadata.total_size, obtained from TF_OperationGetAttrMetadata(oper,
// attr_name).
//
// Fails if storage_size is too small to hold the requested number of strings.
extern void TF_OperationGetAttrStringList(
TF_Operation* oper, const char* attr_name, void** values, size_t* lengths,
int max_values, void* storage, size_t storage_size, TF_Status* status);
extern void TF_OperationGetAttrInt(TF_Operation* oper,
const char* attr_name,
int64_t* value,
TF_Status* status);
// Fills in `values` with the value of the attribute `attr_name` of `oper`.
// `values` must point to an array of length at least `max_values` (ideally set
// TF_AttrMetadata.list_size from TF_OperationGetAttrMetadata(oper,
// attr_name)).
extern void TF_OperationGetAttrIntList(TF_Operation* oper,
const char* attr_name,
int64_t* values,
int max_values,
TF_Status* status);
extern void TF_OperationGetAttrFloat(TF_Operation* oper,
const char* attr_name,
float* value,
TF_Status* status);
// Fills in `values` with the value of the attribute `attr_name` of `oper`.
// `values` must point to an array of length at least `max_values` (ideally set
// to TF_AttrMetadata.list_size from TF_OperationGetAttrMetadata(oper,
// attr_name)).
extern void TF_OperationGetAttrFloatList(TF_Operation* oper,
const char* attr_name,
float* values,
int max_values,
TF_Status* status);
extern void TF_OperationGetAttrBool(TF_Operation* oper,
const char* attr_name,
unsigned char* value,
TF_Status* status);
// Fills in `values` with the value of the attribute `attr_name` of `oper`.
// `values` must point to an array of length at least `max_values` (ideally set
// to TF_AttrMetadata.list_size from TF_OperationGetAttrMetadata(oper,
// attr_name)).
extern void TF_OperationGetAttrBoolList(TF_Operation* oper,
const char* attr_name,
unsigned char* values,
int max_values,
TF_Status* status);
extern void TF_OperationGetAttrType(TF_Operation* oper,
const char* attr_name,
TF_DataType* value,
TF_Status* status);
// Fills in `values` with the value of the attribute `attr_name` of `oper`.
// `values` must point to an array of length at least `max_values` (ideally set
// to TF_AttrMetadata.list_size from TF_OperationGetAttrMetadata(oper,
// attr_name)).
extern void TF_OperationGetAttrTypeList(TF_Operation* oper,
const char* attr_name,
TF_DataType* values,
int max_values,
TF_Status* status);
// Fills in `value` with the value of the attribute `attr_name` of `oper`.
// `values` must point to an array of length at least `num_dims` (ideally set to
// TF_Attr_Meta.size from TF_OperationGetAttrMetadata(oper, attr_name)).
extern void TF_OperationGetAttrShape(TF_Operation* oper,
const char* attr_name,
int64_t* value,
int num_dims,
TF_Status* status);
// Fills in `dims` with the list of shapes in the attribute `attr_name` of
// `oper` and `num_dims` with the corresponding number of dimensions. On return,
// for every i where `num_dims[i]` > 0, `dims[i]` will be an array of
// `num_dims[i]` elements. A value of -1 for `num_dims[i]` indicates that the
// i-th shape in the list is unknown.
//
// The elements of `dims` will point to addresses in `storage` which must be
// large enough to hold at least `storage_size` int64_ts. Ideally, `num_shapes`
// would be set to TF_AttrMetadata.list_size and `storage_size` would be set to
// TF_AttrMetadata.total_size from TF_OperationGetAttrMetadata(oper,
// attr_name).
//
// Fails if storage_size is insufficient to hold the requested shapes.
extern void TF_OperationGetAttrShapeList(
TF_Operation* oper, const char* attr_name, int64_t** dims, int* num_dims,
int num_shapes, int64_t* storage, int storage_size, TF_Status* status);
// Sets `value` to the binary-serialized TensorShapeProto of the value of
// `attr_name` attribute of `oper`'.
extern void TF_OperationGetAttrTensorShapeProto(
TF_Operation* oper, const char* attr_name, TF_Buffer* value,
TF_Status* status);
// Fills in `values` with binary-serialized TensorShapeProto values of the
// attribute `attr_name` of `oper`. `values` must point to an array of length at
// least `num_values` (ideally set to TF_AttrMetadata.list_size from
// TF_OperationGetAttrMetadata(oper, attr_name)).
extern void TF_OperationGetAttrTensorShapeProtoList(
TF_Operation* oper, const char* attr_name, TF_Buffer** values,
int max_values, TF_Status* status);
// Gets the TF_Tensor valued attribute of `attr_name` of `oper`.
//
// Allocates a new TF_Tensor which the caller is expected to take
// ownership of (and can deallocate using TF_DeleteTensor).
extern void TF_OperationGetAttrTensor(TF_Operation* oper,
const char* attr_name,
TF_Tensor** value,
TF_Status* status);
// Fills in `values` with the TF_Tensor values of the attribute `attr_name` of
// `oper`. `values` must point to an array of TF_Tensor* of length at least
// `max_values` (ideally set to TF_AttrMetadata.list_size from
// TF_OperationGetAttrMetadata(oper, attr_name)).
//
// The caller takes ownership of all the non-null TF_Tensor* entries in `values`
// (which can be deleted using TF_DeleteTensor(values[i])).
extern void TF_OperationGetAttrTensorList(TF_Operation* oper,
const char* attr_name,
TF_Tensor** values,
int max_values,
TF_Status* status);
// Sets `output_attr_value` to the binary-serialized AttrValue proto
// representation of the value of the `attr_name` attr of `oper`.
extern void TF_OperationGetAttrValueProto(
TF_Operation* oper, const char* attr_name, TF_Buffer* output_attr_value,
TF_Status* status);
// Returns the operation in the graph with `oper_name`. Returns nullptr if
// no operation found.
extern TF_Operation* TF_GraphOperationByName(
TF_Graph* graph, const char* oper_name);
// Iterate through the operations of a graph. To use:
// size_t pos = 0;
// TF_Operation* oper;
// while ((oper = TF_GraphNextOperation(graph, &pos)) != nullptr) {
// DoSomethingWithOperation(oper);
// }
extern TF_Operation* TF_GraphNextOperation(TF_Graph* graph,
size_t* pos);
// Write out a serialized representation of `graph` (as a GraphDef protocol
// message) to `output_graph_def` (allocated by TF_NewBuffer()).
// `output_graph_def`'s underlying buffer will be freed when TF_DeleteBuffer()
// is called.
//
// May fail on very large graphs in the future.
extern void TF_GraphToGraphDef(TF_Graph* graph,
TF_Buffer* output_graph_def,
TF_Status* status);
// Returns the serialized OpDef proto with name `op_name`, or a bad status if no
// such op exists. This can return OpDefs of functions copied into the graph.
extern void TF_GraphGetOpDef(TF_Graph* graph,
const char* op_name,
TF_Buffer* output_op_def,
TF_Status* status);
// Returns the serialized VersionDef proto for this graph.
extern void TF_GraphVersions(TF_Graph* graph,
TF_Buffer* output_version_def,
TF_Status* status);
// TF_ImportGraphDefOptions holds options that can be passed to
// TF_GraphImportGraphDef.
typedef struct TF_ImportGraphDefOptions TF_ImportGraphDefOptions;
extern TF_ImportGraphDefOptions* TF_NewImportGraphDefOptions();
extern void TF_DeleteImportGraphDefOptions(
TF_ImportGraphDefOptions* opts);
// Set the prefix to be prepended to the names of nodes in `graph_def` that will
// be imported into `graph`.
extern void TF_ImportGraphDefOptionsSetPrefix(
TF_ImportGraphDefOptions* opts, const char* prefix);
// Set whether to uniquify imported operation names. If true, imported operation
// names will be modified if their name already exists in the graph. If false,
// conflicting names will be treated as an error. Note that this option has no
// effect if a prefix is set, since the prefix will guarantee all names are
// unique. Defaults to false.
extern void TF_ImportGraphDefOptionsSetUniquifyNames(
TF_ImportGraphDefOptions* opts, unsigned char uniquify_names);
// If true, the specified prefix will be modified if it already exists as an
// operation name or prefix in the graph. If false, a conflicting prefix will be
// treated as an error. This option has no effect if no prefix is specified.
extern void TF_ImportGraphDefOptionsSetUniquifyPrefix(
TF_ImportGraphDefOptions* opts, unsigned char uniquify_prefix);
// Set any imported nodes with input `src_name:src_index` to have that input
// replaced with `dst`. `src_name` refers to a node in the graph to be imported,
// `dst` references a node already existing in the graph being imported into.
extern void TF_ImportGraphDefOptionsAddInputMapping(
TF_ImportGraphDefOptions* opts, const char* src_name, int src_index,
TF_Output dst);
// Set any imported nodes with control input `src_name` to have that input
// replaced with `dst`. `src_name` refers to a node in the graph to be imported,
// `dst` references an operation already existing in the graph being imported
// into.
extern void TF_ImportGraphDefOptionsRemapControlDependency(
TF_ImportGraphDefOptions* opts, const char* src_name, TF_Operation* dst);
// Cause the imported graph to have a control dependency on `oper`. `oper`
// should exist in the graph being imported into.
extern void TF_ImportGraphDefOptionsAddControlDependency(
TF_ImportGraphDefOptions* opts, TF_Operation* oper);
// Add an output in `graph_def` to be returned via the `return_outputs` output
// parameter of TF_GraphImportGraphDef(). If the output is remapped via an input
// mapping, the corresponding existing tensor in `graph` will be returned.
extern void TF_ImportGraphDefOptionsAddReturnOutput(
TF_ImportGraphDefOptions* opts, const char* oper_name, int index);
// Returns the number of return outputs added via
// TF_ImportGraphDefOptionsAddReturnOutput().
extern int TF_ImportGraphDefOptionsNumReturnOutputs(
const TF_ImportGraphDefOptions* opts);
// Add an operation in `graph_def` to be returned via the `return_opers` output
// parameter of TF_GraphImportGraphDef().
extern void TF_ImportGraphDefOptionsAddReturnOperation(
TF_ImportGraphDefOptions* opts, const char* oper_name);
// Returns the number of return operations added via
// TF_ImportGraphDefOptionsAddReturnOperation().
extern int TF_ImportGraphDefOptionsNumReturnOperations(
const TF_ImportGraphDefOptions* opts);
// TF_ImportGraphDefResults holds results that are generated by
// TF_GraphImportGraphDefWithResults().
typedef struct TF_ImportGraphDefResults TF_ImportGraphDefResults;
// Fetches the return outputs requested via
// TF_ImportGraphDefOptionsAddReturnOutput(). The number of fetched outputs is
// returned in `num_outputs`. The array of return outputs is returned in
// `outputs`. `*outputs` is owned by and has the lifetime of `results`.
extern void TF_ImportGraphDefResultsReturnOutputs(
TF_ImportGraphDefResults* results, int* num_outputs, TF_Output** outputs);
// Fetches the return operations requested via
// TF_ImportGraphDefOptionsAddReturnOperation(). The number of fetched
// operations is returned in `num_opers`. The array of return operations is
// returned in `opers`. `*opers` is owned by and has the lifetime of `results`.
extern void TF_ImportGraphDefResultsReturnOperations(
TF_ImportGraphDefResults* results, int* num_opers, TF_Operation*** opers);
// Fetches any input mappings requested via
// TF_ImportGraphDefOptionsAddInputMapping() that didn't appear in the GraphDef
// and weren't used as input to any node in the imported graph def. The number
// of fetched mappings is returned in `num_missing_unused_input_mappings`. The
// array of each mapping's source node name is returned in `src_names`, and the
// array of each mapping's source index is returned in `src_indexes`.
//
// `*src_names`, `*src_indexes`, and the memory backing each string in
// `src_names` are owned by and have the lifetime of `results`.
extern void TF_ImportGraphDefResultsMissingUnusedInputMappings(
TF_ImportGraphDefResults* results, int* num_missing_unused_input_mappings,
const char*** src_names, int** src_indexes);
// Deletes a results object returned by TF_GraphImportGraphDefWithResults().
extern void TF_DeleteImportGraphDefResults(
TF_ImportGraphDefResults* results);
// Import the graph serialized in `graph_def` into `graph`. Returns nullptr and
// a bad status on error. Otherwise, returns a populated
// TF_ImportGraphDefResults instance. The returned instance must be deleted via
// TF_DeleteImportGraphDefResults().
extern TF_ImportGraphDefResults*
TF_GraphImportGraphDefWithResults(TF_Graph* graph, const TF_Buffer* graph_def,
const TF_ImportGraphDefOptions* options,
TF_Status* status);
// Import the graph serialized in `graph_def` into `graph`.
// Convenience function for when only return outputs are needed.
//
// `num_return_outputs` must be the number of return outputs added (i.e. the
// result of TF_ImportGraphDefOptionsNumReturnOutputs()). If
// `num_return_outputs` is non-zero, `return_outputs` must be of length
// `num_return_outputs`. Otherwise it can be null.
extern void TF_GraphImportGraphDefWithReturnOutputs(
TF_Graph* graph, const TF_Buffer* graph_def,
const TF_ImportGraphDefOptions* options, TF_Output* return_outputs,
int num_return_outputs, TF_Status* status);
// Import the graph serialized in `graph_def` into `graph`.
// Convenience function for when no results are needed.
extern void TF_GraphImportGraphDef(
TF_Graph* graph, const TF_Buffer* graph_def,
const TF_ImportGraphDefOptions* options, TF_Status* status);
// Adds a copy of function `func` and optionally its gradient function `grad`
// to `g`. Once `func`/`grad` is added to `g`, it can be called by creating
// an operation using the function's name.
// Any changes to `func`/`grad` (including deleting it) done after this method
// returns, won't affect the copy of `func`/`grad` in `g`.
// If `func` or `grad` are already in `g`, TF_GraphCopyFunction has no
// effect on them, but can establish the function->gradient relationship
// between them if `func` does not already have a gradient. If `func` already