diff --git a/README.md b/README.md index af405dda3..db7d795be 100644 --- a/README.md +++ b/README.md @@ -299,7 +299,7 @@ An implementation of Kernel SHAP, a model agnostic method to estimate SHAP value - [**Census income classification with scikit-learn**](https://slundberg.github.io/shap/notebooks/Census%20income%20classification%20with%20scikit-learn.html) - Using the standard adult census income dataset, this notebook trains a k-nearest neighbors classifier using scikit-learn and then explains predictions using `shap`. -- [**ImageNet VGG16 Model with Keras**](https://slundberg.github.io/shap/notebooks/ImageNet%20VGG16%20Model%20with%20Keras.html) - Explain the classic VGG16 convolutional nerual network's predictions for an image. This works by applying the model agnostic Kernel SHAP method to a super-pixel segmented image. +- [**ImageNet VGG16 Model with Keras**](https://slundberg.github.io/shap/notebooks/ImageNet%20VGG16%20Model%20with%20Keras.html) - Explain the classic VGG16 convolutional neural network's predictions for an image. This works by applying the model agnostic Kernel SHAP method to a super-pixel segmented image. - [**Iris classification**](https://slundberg.github.io/shap/notebooks/Iris%20classification%20with%20scikit-learn.html) - A basic demonstration using the popular iris species dataset. It explains predictions from six different models in scikit-learn using `shap`.