-
Notifications
You must be signed in to change notification settings - Fork 1
/
discriminators.py
executable file
·234 lines (204 loc) · 11.5 KB
/
discriminators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import tensorflow as tf
from tensorflow.python.ops import rnn
def linear(input_, output_size, scope=None):
'''
Linear map: output[k] = sum_i(Matrix[k, i] * input_[i] ) + Bias[k]
Args:
input_: a tensor or a list of 2D, batch x n, Tensors.
output_size: int, second dimension of W[i].
scope: VariableScope for the created subgraph; defaults to "Linear".
Returns:
A 2D Tensor with shape [batch x output_size] equal to
sum_i(input_[i] * W[i]), where W[i]s are newly created matrices.
Raises:
ValueError: if some of the arguments has unspecified or wrong shape.
'''
shape = input_.get_shape().as_list()
if len(shape) != 2:
raise ValueError("Linear is expecting 2D arguments: %s" % str(shape))
if not shape[1]:
raise ValueError("Linear expects shape[1] of arguments: %s" % str(shape))
input_size = shape[1]
# Now the computation.
with tf.variable_scope(scope or "SimpleLinear"):
matrix = tf.get_variable("Matrix", [output_size, input_size], dtype=input_.dtype)
bias_term = tf.get_variable("Bias", [output_size], dtype=input_.dtype)
return tf.matmul(input_, tf.transpose(matrix)) + bias_term
def highway(input_, size, num_layers=1, bias=-2.0, f=tf.nn.relu, scope='Highway'):
"""Highway Network (cf. http://arxiv.org/abs/1505.00387).
t = sigmoid(Wy + b)
z = t * g(Wy + b) + (1 - t) * y
where g is nonlinearity, t is transform gate, and (1 - t) is carry gate.
"""
with tf.variable_scope(scope):
for idx in range(num_layers):
g = f(linear(input_, size, scope='highway_lin_%d' % idx))
t = tf.sigmoid(linear(input_, size, scope='highway_gate_%d' % idx) + bias)
output = t * g + (1. - t) * input_
input_ = output
return output
def xavier_init(fan_in, fan_out, constant=1e-4):
""" Xavier initialization of network weights"""
# https://stackoverflow.com/questions/33640581/how-to-do-xavier-initialization-on-tensorflow
low = -constant*np.sqrt(6.0/(fan_in + fan_out))
high = constant*np.sqrt(6.0/(fan_in + fan_out))
return tf.random_uniform((fan_in, fan_out),
minval=low, maxval=high,
dtype=tf.float32)
class DC(object):
"""
A CNN for text classification.
Uses an embedding layer, followed by a convolutional, max-pooling and softmax layer.
"""
def __init__(
self, sequence_length, num_classes, vocab_size,
embedding_size, filter_sizes, num_filters, l2_reg_lambda=0.0,emb_dim_in=None):
# Placeholders for input, output and dropout
if emb_dim_in is None:
self.input_x = tf.placeholder(tf.int32, [None, sequence_length], name="input_x")
else:
self.input_x = tf.placeholder(tf.float32, [None, sequence_length,emb_dim_in], name="input_x")
self.input_y = tf.placeholder(tf.float32, [None, num_classes], name="input_y")
self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")
# Keeping track of l2 regularization loss (optional)
l2_loss = tf.constant(0.0)
with tf.variable_scope('discriminator'):
# Embedding layer
if emb_dim_in is None:
with tf.device('/cpu:0'), tf.name_scope("embedding"):
self.W = tf.Variable(
tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0),
name="W")
self.embedded_chars = tf.nn.embedding_lookup(self.W, self.input_x)
self.b=tf.Variable(tf.zeros([embedding_size]),dtype=tf.float32)
self.embedded_chars+=self.b
self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1)
else:
self.W = tf.Variable(
tf.random_uniform([emb_dim_in, embedding_size], -1.0, 1.0),
name="W")
self.embedded_chars = tf.matmul(tf.reshape(self.input_x,[-1,emb_dim_in]),self.W)
self.b=tf.Variable(tf.zeros([embedding_size]),dtype=tf.float32)
self.embedded_chars+=self.b
self.embedded_chars=tf.reshape(self.embedded_chars,[-1,sequence_length,embedding_size])
self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1)
# Create a convolution + maxpool layer for each filter size
pooled_outputs = []
for filter_size, num_filter in zip(filter_sizes, num_filters):
with tf.name_scope("conv-maxpool-%s" % filter_size):
# Convolution Layer
filter_shape = [filter_size, embedding_size, 1, num_filter]
W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W")
b = tf.Variable(tf.constant(0.1, shape=[num_filter]), name="b")
conv = tf.nn.conv2d(
self.embedded_chars_expanded,
W,
strides=[1, 1, 1, 1],
padding="VALID",
name="conv")
# Apply nonlinearity
h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")
# Maxpooling over the outputs
pooled = tf.nn.max_pool(
h,
ksize=[1, sequence_length - filter_size + 1, 1, 1],
strides=[1, 1, 1, 1],
padding='VALID',
name="pool")
pooled_outputs.append(pooled)
# Combine all the pooled features
num_filters_total = sum(num_filters)
self.h_pool = tf.concat(pooled_outputs, 3)
self.h_pool_flat = tf.reshape(self.h_pool, [-1, num_filters_total])
# Add highway
with tf.name_scope("highway"):
self.h_highway = highway(self.h_pool_flat, self.h_pool_flat.get_shape()[1], 1, 0)
# Add dropout
with tf.name_scope("dropout"):
self.h_drop = tf.nn.dropout(self.h_highway, self.dropout_keep_prob)
# Final (unnormalized) scores and predictions
with tf.name_scope("output"):
W = tf.Variable(tf.truncated_normal([num_filters_total, num_classes], stddev=0.1), name="W")
b = tf.Variable(tf.constant(0.1, shape=[num_classes]), name="b")
l2_loss += tf.nn.l2_loss(W)
l2_loss += tf.nn.l2_loss(b)
self.scores = tf.nn.xw_plus_b(self.h_drop, W, b, name="scores")
self.ypred_for_auc = tf.nn.softmax(self.scores)
self.predictions = tf.argmax(self.scores, 1, name="predictions")
# CalculateMean cross-entropy loss
with tf.name_scope("loss"):
losses = tf.nn.softmax_cross_entropy_with_logits(logits=self.scores, labels=self.input_y)
self.loss = tf.reduce_mean(losses) + l2_reg_lambda * l2_loss
self.params = [param for param in tf.trainable_variables() if 'discriminator' in param.name]
d_optimizer = tf.train.AdamOptimizer(1e-4)
grads_and_vars = d_optimizer.compute_gradients(self.loss, self.params, aggregation_method=2)
self.train_op = d_optimizer.apply_gradients(grads_and_vars)
class DLSTM(object):
def __init__(self,sequence_length,num_classes,hidden_dim,middle_dim,emb_dim_in,bidir=False,):
self.input_x = tf.placeholder(tf.float32, [None, sequence_length], name="input_x")
self.input_y = tf.placeholder(tf.float32, [None, num_classes], name="input_y")
self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")
# self.vl=[self.W,self.b,self.W2,self.b2]
self.forward_cell=tf.contrib.rnn.BasicLSTMCell(hidden_dim)
if bidir:
self.backward_cell=tf.contrib.rnn.BasicLSTMCell(hidden_dim)
self.bidir=bidir
self.num_classes=num_classes
self.hidden_dim=hidden_dim
self.sequence_length=sequence_length
self.middle_dim=middle_dim
self.emb_dim_in=emb_dim_in
trainability=False
# with tf.device('/cpu:0'):
# om=tf.Variable(xavier_init(self.n_z, self.n_z),name='out_mean',trainable=trainability)
# if not vanilla:
# all_weights['biases_variational_encoding'] = {
# 'out_mean': tf.Variable(tf.zeros([self.n_z], dtype=tf.float32),name='out_meanb',trainable=trainability),
# 'out_log_sigma': tf.Variable(tf.zeros([self.n_z], dtype=tf.float32),name='out_log_sigmab',trainable=trainability)}
# all_weights['variational_encoding'] = {
# 'out_mean': om,
# 'out_log_sigma': tf.Variable(xavier_init(self.n_input, self.n_z),name='out_log_sigma',trainable=trainability)}
# else:
# all_weights['biases_variational_encoding'] = {
# 'out_mean': tf.Variable(tf.zeros([self.n_z], dtype=tf.float32),name='out_meanb',trainable=trainability)}
# all_weights['variational_encoding'] = {
# 'out_mean': om}
self.W=None
if not self.bidir:
self.W=tf.Variable(tf.random_normal([self.hidden_dim*self.sequence_length,self.middle_dim]),name='dlstm')
else:
self.W=tf.Variable(tf.random_normal([2*self.hidden_dim*self.sequence_length,self.middle_dim]),name='dlstm')
self.b=tf.Variable(tf.zeros([self.middle_dim]),name='dlstmb')
self.W2=tf.Variable(tf.random_normal([self.middle_dim,self.num_classes]),name='dlstm2')
self.b2=tf.Variable(tf.zeros([self.num_classes]),name='dlstm2b')
# all_encoding_weights=[all_weights[x].values() for x in all_weights]
# encoding_weights=[]
# for w in all_encoding_weights:
# encoding_weights+=w
# self.Dvars=[self.W,self.b,self.W2,self.b2]+encoding_weights
# self._build_network()
def _build_network(self):
embedded_input,KLD_loss=self._get_word_embedding([all_weights['variational_encoding'],all_weights['biases_variational_encoding']],None,tf.reshape(self.input_x,[-1]),logit=True)
embedded_input=tf.reshape(embedded_input,[-1,self.sequence_length,self.emb_dim_in])
if self.bidir:
outs,_,_=tf.contrib.rnn.static_bidirectional_rnn(self.forward_cell,self.backward_cell,embedded_input)
outs=tf.reshape(outs,[-1,self.sequence_length*2*self.hidden_dim])
else:
outs,states=tf.contrib.rnn.static_rnn(self.forward_cell,embedded_input)
outs=tf.reshape(outs,[-1,self.sequence_length*self.hidden_dim])
middle=tf.matmul(outs,self.W)+self.b
middle=tf.nn.dropout(self.dropout_keep_prob)
out=tf.matmul(middle,self.W2)+self.b2
self.D1=tf.sigmoid(out)
def discriminate(self,input_x,train=True):
if self.bidir:
outs,_,_=tf.contrib.rnn.static_bidirectional_rnn(self.forward_cell,self.backward_cell,input_x,time_major=False)
outs=tf.reshape(outs,[-1,self.sequence_length*2*self.hidden_dim])
else:
outs,states=rnn.dynamic_rnn(self.forward_cell,input_x,dtype=tf.float32,time_major=False)
outs=tf.reshape(outs,[-1,self.sequence_length*self.hidden_dim])
middle=tf.matmul(outs,self.W)+self.b
middle=tf.nn.dropout(middle,self.dropout_keep_prob)
out=tf.matmul(middle,self.W2)+self.b2
return tf.sigmoid(out)
# return loss=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=out,labels=input_y))