-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcapt_gen_o2e_cs.py
executable file
·715 lines (620 loc) · 28.7 KB
/
capt_gen_o2e_cs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
# -*- coding: utf-8 -*-
import math
import os
import tensorflow as tf
import numpy as np
import pandas as pd
import pickle
import pickle as pkl
import cv2
import skimage
import tensorflow.python.platform
from tensorflow.python.ops import rnn
from keras.preprocessing import sequence
from collections import Counter
from collections import defaultdict
import itertools
test_image_path='./data/acoustic-guitar-player.jpg'
vgg_path='./data/vgg16-20160129.tfmodel'
n=50000-2
def map_lambda():
return n+1
def rev_map_lambda():
return "<UNK>"
def load_text(n,capts,num_samples=None):
# fname = 'Oxford_English_Dictionary.txt'
# txt = []
# with open(fname,'rb') as f:
# txt = f.readlines()
# txt = [x.decode('utf-8').strip() for x in txt]
# txt = [re.sub(r'[^a-zA-Z ]+', '', x) for x in txt if len(x) > 1]
# List of words
# word_list = [x.split(' ', 1)[0].strip() for x in txt]
# # List of definitions
# def_list = [x.split(' ', 1)[1].strip()for x in txt]
with open('./training_data/training_data.pkl','rb') as raw:
word_list,dl=pkl.load(raw)
def_list=[]
# def_list=[' '.join(defi) for defi in def_list]
i=0
while i<len( dl):
defi=dl[i]
if len(defi)>0:
def_list+=[' '.join(defi)]
i+=1
else:
dl.pop(i)
word_list.pop(i)
maxlen=0
minlen=100
for defi in def_list:
minlen=min(minlen,len(defi.split()))
maxlen=max(maxlen,len(defi.split()))
print(minlen)
print(maxlen)
maxlen=30
# # Initialize the "CountVectorizer" object, which is scikit-learn's
# # bag of words tool.
# vectorizer = CountVectorizer(analyzer = "word", \
# tokenizer = None, \
# preprocessor = None, \
# stop_words = None, \
# max_features = None, \
# token_pattern='\\b\\w+\\b') # Keep single character words
# _map,rev_map=get_one_hot_map(word_list,def_list,n)
_map=pkl.load(open('mapaoh.pkl','rb'))
rev_map=pkl.load(open('rev_mapaoh.pkl','rb'))
if num_samples is not None:
num_samples=len(capts)
# X = map_one_hot(word_list[:num_samples],_map,1,n)
# y = (36665, 56210)
# print _map
if capts is not None:
# y,mask = map_one_hot(capts[:num_samples],_map,maxlen,n)
# np.save('ycoh')
y=np.load('ycoh.npy','r')
else:
# np.save('X',X)
# np.save('yc',y)
# np.save('maskc',mask)
y=np.load('yaoh.npy','r')
X=np.load('Xaoh.npy','r')
mask=np.load('maskaoh.npy','r')
print (np.max(y))
return X, y, mask,rev_map
def get_one_hot_map(to_def,corpus,n):
# words={}
# for line in to_def:
# if line:
# words[line.split()[0]]=1
# counts=defaultdict(int)
# uniq=defaultdict(int)
# for line in corpus:
# for word in line.split():
# if word not in words:
# counts[word]+=1
# words=list(words.keys())
words=[]
counts=defaultdict(int)
uniq=defaultdict(int)
for line in to_def+corpus:
for word in line.split():
if word not in words:
counts[word]+=1
_map=defaultdict(lambda :n+1)
rev_map=defaultdict(lambda:"<UNK>")
# words=words[:25000]
for i in counts.values():
uniq[i]+=1
print (len(words))
# random.shuffle(words)
words+=list(map(lambda z:z[0],reversed(sorted(counts.items(),key=lambda x:x[1]))))[:n-len(words)]
print (len(words))
i=0
# random.shuffle(words)
for num_bits in range(binary_dim):
for bit_config in itertools.combinations_with_replacement(range(binary_dim),num_bits+1):
bitmap=np.zeros(binary_dim)
bitmap[np.array(bit_config)]=1
num=bitmap*(2** np.arange(binary_dim ))
num=np.sum(num).astype(np.uint32)
word=words[i]
_map[word]=num
rev_map[num]=word
i+=1
if i>=len(words):
break
if i>=len(words):
break
# for word in words:
# i+=1
# _map[word]=i
# rev_map[i]=word
rev_map[n+1]='<UNK>'
if zero_end_tok:
rev_map[0]='.'
else:
rev_map[0]='Start'
rev_map[n+2]='End'
print (list(reversed(sorted(uniq.items()))))
print (len(list(uniq.items())))
# print rev_map
return _map,rev_map
def map_word_emb(corpus,_map):
### NOTE: ONLY WORKS ON TARGET WORD (DOES NOT HANDLE UNK PROPERLY)
rtn=[]
rtn2=[]
for word in corpus:
mapped=_map[word]
rtn.append(mapped)
if get_rand_vec:
mapped_rand=random.choice(list(_map.keys()))
while mapped_rand==word:
mapped_rand=random.choice(list(_map.keys()))
mapped_rand=_map[mapped_rand]
rtn2.append(mapped_rand)
if get_rand_vec:
return np.array(rtn),np.array(rtn2)
return np.array(rtn)
def map_one_hot(corpus,_map,maxlen,n):
if maxlen==1:
if not form2:
total_not=0
rtn=np.zeros([len(corpus),n+3],dtype=np.float32)
for l,line in enumerate(corpus):
if len(line)==0:
rtn[l,-1]=1
else:
mapped=_map[line]
if mapped==75001:
total_not+=1
rtn[l,mapped]=1
print (total_not,len(corpus))
return rtn
else:
total_not=0
rtn=np.zeros([len(corpus)],dtype=np.float32)
for l,line in enumerate(corpus):
if len(line)==0:
rtn[l,-1]=1
else:
mapped=_map[line]
if mapped==75001:
total_not+=1
rtn[l]=mapped
print (total_not,len(corpus))
return rtn
else:
if form2:
rtn=np.zeros([len(corpus),maxlen+2],dtype=np.float32)
else:
rtn=np.zeros([len(corpus),maxlen+2],dtype=np.int32)
print (rtn.shape)
mask=np.zeros([len(corpus),maxlen+2],dtype=np.float32)
print (mask.shape)
mask[:,1]=1.0
totes=0
nopes=0
wtf=0
for l,_line in enumerate(corpus):
x=0
line=_line.split()
for i in range(min(len(line),maxlen-1)):
# if line[i] not in _map:
# nopes+=1
mapped=_map[line[i]]
rtn[l,i+1]=mapped
if mapped==n+1:
wtf+=1
mask[l,i+1]=1.0
totes+=1
x=i+1
to_app=n+2
if zero_end_tok:
to_app=0
rtn[l,x+1]=to_app
mask[l,x+1]=1.0
print (nopes,totes,wtf)
return rtn,mask
def xavier_init(fan_in, fan_out, constant=1e-4):
""" Xavier initialization of network weights"""
# https://stackoverflow.com/questions/33640581/how-to-do-xavier-initialization-on-tensorflow
low = -constant*np.sqrt(6.0/(fan_in + fan_out))
high = constant*np.sqrt(6.0/(fan_in + fan_out))
return tf.random_uniform((fan_in, fan_out),
minval=low, maxval=high,
dtype=tf.float32)
class Caption_Generator():
def __init__(self, dim_in, dim_embed, dim_hidden, batch_size, n_lstm_steps, n_words, init_b=None,from_image=False,n_input=None,n_lstm_input=None,n_z=None):
self.dim_in = dim_in
self.dim_embed = dim_embed
self.dim_hidden = dim_hidden
self.batch_size = batch_size
self.n_lstm_steps = n_lstm_steps
self.n_words = n_words
self.n_input = n_input
self.n_lstm_input=n_lstm_input
self.n_z=n_z
if from_image:
with open(vgg_path,'rb') as f:
fileContent = f.read()
graph_def = tf.GraphDef()
graph_def.ParseFromString(fileContent)
self.images = tf.placeholder("float32", [1, 224, 224, 3])
tf.import_graph_def(graph_def, input_map={"images":self.images})
graph = tf.get_default_graph()
self.sess = tf.InteractiveSession(graph=graph)
self.from_image=from_image
# declare the variables to be used for our word embeddings
self.word_embedding = tf.Variable(tf.random_uniform([self.n_z, self.dim_embed], -0.1, 0.1), name='word_embedding')
self.embedding_bias = tf.Variable(tf.zeros([dim_embed]), name='embedding_bias')
# declare the LSTM itself
self.lstm = tf.contrib.rnn.BasicLSTMCell(dim_hidden)
# declare the variables to be used to embed the image feature embedding to the word embedding space
self.img_embedding = tf.Variable(tf.random_uniform([dim_in, dim_hidden], -0.1, 0.1), name='img_embedding')
self.img_embedding_bias = tf.Variable(tf.zeros([dim_hidden]), name='img_embedding_bias')
# declare the variables to go from an LSTM output to a word encoding output
self.word_encoding = tf.Variable(tf.random_uniform([dim_hidden, self.n_z], -0.1, 0.1), name='word_encoding')
# initialize this bias variable from the preProBuildWordVocab output
# optional initialization setter for encoding bias variable
if init_b is not None:
self.word_encoding_bias = tf.Variable(init_b, name='word_encoding_bias')
else:
self.word_encoding_bias = tf.Variable(tf.zeros([self.n_z]), name='word_encoding_bias')
with tf.device('/cpu:0'):
self.embw=tf.Variable(xavier_init(self.n_input,self.dim_hidden),name='embw')
self.embb=tf.Variable(tf.zeros([self.dim_hidden]),name='embb')
self.all_encoding_weights=[self.embw,self.embb]
def build_model(self):
# declaring the placeholders for our extracted image feature vectors, our caption, and our mask
# (describes how long our caption is with an array of 0/1 values of length `maxlen`
img = tf.placeholder(tf.float32, [self.batch_size, self.dim_in])
caption_placeholder = tf.placeholder(tf.int32, [self.batch_size, self.n_lstm_steps])
mask = tf.placeholder(tf.float32, [self.batch_size, self.n_lstm_steps])
self.output_placeholder = tf.placeholder(tf.int32, [self.batch_size, self.n_lstm_steps])
network_weights = self._initialize_weights()
# getting an initial LSTM embedding from our image_imbedding
image_embedding = tf.matmul(img, self.img_embedding) + self.img_embedding_bias
flat_caption_placeholder=tf.reshape(caption_placeholder,[-1])
#leverage one-hot sparsity to lookup embeddings fast
embedded_input,KLD_loss=self._get_word_embedding([network_weights['variational_encoding'],network_weights['biases_variational_encoding']],network_weights['input_meaning'],flat_caption_placeholder,logit=True)
KLD_loss=tf.multiply(KLD_loss,tf.reshape(mask,[-1,1]))
KLD_loss=tf.reduce_sum(KLD_loss)
# word_embeddings=tf.matmul(embedded_input,self.word_embedding)+self.embedding_bias
with tf.device('/cpu:0'):
word_embeddings=tf.nn.embedding_lookup(self.embw,flat_caption_placeholder)
word_embeddings+=self.embb
word_embeddings=tf.reshape(word_embeddings,[self.batch_size,self.n_lstm_steps,-1])
embedded_input=tf.reshape(embedded_input,[self.batch_size,self.n_lstm_steps,-1])
embedded_input=tf.nn.l2_normalize(embedded_input,dim=-1)
#initialize lstm state
state = self.lstm.zero_state(self.batch_size, dtype=tf.float32)
rnn_output=[]
total_loss=0
with tf.variable_scope("RNN"):
# unroll lstm
for i in range(self.n_lstm_steps):
if i > 0:
# if this isn’t the first iteration of our LSTM we need to get the word_embedding corresponding
# to the (i-1)th word in our caption
current_embedding = word_embeddings[:,i-1,:]
else:
#if this is the first iteration of our LSTM we utilize the embedded image as our input
current_embedding = image_embedding
if i > 0:
# allows us to reuse the LSTM tensor variable on each iteration
tf.get_variable_scope().reuse_variables()
out, state = self.lstm(current_embedding, state)
if i>0:
out=tf.nn.l2_normalize(tf.matmul(out,self.word_encoding)+self.word_encoding_bias,dim=-1)
total_loss+=tf.reduce_sum(tf.reduce_sum(tf.multiply(embedded_input[:,i,:],out),axis=-1)*mask[:,i])
# #perform classification of output
# rnn_output=tf.concat(rnn_output,axis=1)
# rnn_output=tf.reshape(rnn_output,[self.batch_size*(self.n_lstm_steps),-1])
# encoded_output=tf.matmul(rnn_output,self.word_encoding)+self.word_encoding_bias
# #get loss
# normed_embedding= tf.nn.l2_normalize(encoded_output, dim=-1)
# normed_target=tf.nn.l2_normalize(embedded_input,dim=-1)
# cos_sim=tf.multiply(normed_embedding,normed_target)[:,1:]
# cos_sim=(tf.reduce_sum(cos_sim,axis=-1))
# cos_sim=tf.reshape(cos_sim,[self.batch_size,-1])
# cos_sim=tf.reduce_sum(cos_sim[:,1:]*mask[:,1:])
cos_sim=total_loss/tf.reduce_sum(mask[:,1:])
# self.exp_loss=tf.reduce_sum((-cos_sim))
# self.exp_loss=tf.reduce_sum(xentropy)/float(self.batch_size)
total_loss = tf.reduce_sum(-(cos_sim))
# mse=tf.reduce_sum(tf.reshape(tf.square(encoded_output-embedded_input),[self.batch_size,self.n_lstm_steps,-1]),axis=-1)[:,1:]*(mask[:,1:])
# mse=tf.reduce_sum(mse)/tf.reduce_sum(mask[:,1:])
#average over timeseries length
# total_loss=tf.reduce_sum(masked_xentropy)/tf.reduce_sum(mask[:,1:])
# total_loss=mse
self.print_loss=total_loss
total_loss+=KLD_loss/tf.reduce_sum(mask)
return total_loss, img, caption_placeholder, mask
def build_generator(self, maxlen, batchsize=1,from_image=False):
#same setup as `build_model` function
img = tf.placeholder(tf.float32, [self.batch_size, self.dim_in])
image_embedding = tf.matmul(img, self.img_embedding) + self.img_embedding_bias
state = self.lstm.zero_state(batchsize,dtype=tf.float32)
#declare list to hold the words of our generated captions
all_words = []
with tf.variable_scope("RNN"):
# in the first iteration we have no previous word, so we directly pass in the image embedding
# and set the `previous_word` to the embedding of the start token ([0]) for the future iterations
output, state = self.lstm(image_embedding, state)
previous_word = tf.nn.embedding_lookup(self.word_embedding, [0]) + self.embedding_bias
for i in range(maxlen):
tf.get_variable_scope().reuse_variables()
out, state = self.lstm(previous_word, state)
# get a get maximum probability word and it's encoding from the output of the LSTM
logit = tf.matmul(out, self.word_encoding) + self.word_encoding_bias
best_word = tf.argmax(logit, 1)
with tf.device("/cpu:0"):
# get the embedding of the best_word to use as input to the next iteration of our LSTM
previous_word = tf.nn.embedding_lookup(self.word_embedding, best_word)
previous_word += self.embedding_bias
all_words.append(best_word)
self.img=img
self.all_words=all_words
return img, all_words
def _initialize_weights(self):
all_weights = dict()
trainability=False
if not same_embedding:
all_weights['input_meaning'] = {
'affine_weight': tf.Variable(xavier_init(self.n_z, self.n_lstm_input),name='affine_weight',trainable=trainability),
'affine_bias': tf.Variable(tf.zeros(self.n_lstm_input),name='affine_bias',trainable=trainability)}
with tf.device('/cpu:0'):
om=tf.Variable(xavier_init(self.n_input, self.n_z),name='out_mean',trainable=trainability)
if not vanilla:
all_weights['biases_variational_encoding'] = {
'out_mean': tf.Variable(tf.zeros([self.n_z], dtype=tf.float32),name='out_meanb',trainable=trainability),
'out_log_sigma': tf.Variable(tf.zeros([self.n_z], dtype=tf.float32),name='out_log_sigmab',trainable=trainability)}
all_weights['variational_encoding'] = {
'out_mean': om,
'out_log_sigma': tf.Variable(xavier_init(self.n_input, self.n_z),name='out_log_sigma',trainable=trainability)}
else:
all_weights['biases_variational_encoding'] = {
'out_mean': tf.Variable(tf.zeros([self.n_z], dtype=tf.float32),name='out_meanb',trainable=trainability)}
all_weights['variational_encoding'] = {
'out_mean': om}
# self.no_reload+=all_weights['input_meaning'].values()
# self.var_embs=[]
# if transfertype2:
# self.var_embs=all_weights['biases_variational_encoding'].values()+all_weights['variational_encoding'].values()
# self.lstm=tf.contrib.rnn.BasicLSTMCell(n_lstm_input)
# if lstm_stack>1:
# self.lstm=tf.contrib.rnn.MultiRNNCell([self.lstm]*lstm_stack)
# all_weights['LSTM'] = {
# 'affine_weight': tf.Variable(xavier_init(n_z, n_lstm_input),name='affine_weight2'),
# 'affine_bias': tf.Variable(tf.zeros(n_lstm_input),name='affine_bias2'),
# 'encoding_weight': tf.Variable(xavier_init(n_lstm_input,n_input),name='encoding_weight'),
# 'encoding_bias': tf.Variable(tf.zeros(n_input),name='encoding_bias'),
# 'lstm': self.lstm}
all_encoding_weights=[all_weights[x].values() for x in all_weights]
for w in all_encoding_weights:
self.all_encoding_weights+=w
return all_weights
def _get_word_embedding(self, ve_weights, lstm_weights, x,logit=False):
# x=tf.matmul(x,self.embw)+self.embb
if logit:
z,vae_loss=self._vae_sample(ve_weights[0],ve_weights[1],x,lookup=True)
else:
if not form2:
z,vae_loss=self._vae_sample(ve_weights[0],ve_weights[1],x, True)
else:
z,vae_loss=self._vae_sample(ve_weights[0],ve_weights[1],tf.one_hot(x,depth=self.n_input))
all_the_f_one_h.append(tf.one_hot(x,depth=self.n_input))
embedding=tf.matmul(z,self.word_embedding)+self.embedding_bias
embedding=z
return embedding,vae_loss
def _vae_sample(self, weights, biases, x, lookup=False):
#TODO: consider adding a linear transform layer+relu or softplus here first
if not lookup:
mu=tf.matmul(x,weights['out_mean'])+biases['out_mean']
if not vanilla:
logvar=tf.matmul(x,weights['out_log_sigma'])+biases['out_log_sigma']
else:
with tf.device('/cpu:0'):
mu=tf.nn.embedding_lookup(weights['out_mean'],x)
mu+=biases['out_mean']
if not vanilla:
with tf.device('/cpu:0'):
logvar=tf.nn.embedding_lookup(weights['out_log_sigma'],x)
logvar+=biases['out_log_sigma']
if not vanilla:
epsilon=tf.random_normal(tf.shape(logvar),name='epsilon')
std=tf.exp(.5*logvar)
z=mu+tf.multiply(std,epsilon)
else:
z=mu
KLD=0.0
if not vanilla:
KLD = -0.5 * tf.reduce_sum(1 + logvar - tf.pow(mu, 2) - tf.exp(logvar),axis=-1)
print logvar.shape,epsilon.shape,std.shape,z.shape,KLD.shape
return z,KLD
def crop_image(self,x, target_height=227, target_width=227, as_float=True,from_path=True):
#image preprocessing to crop and resize image
image = (x)
if from_path==True:
image=cv2.imread(image)
if as_float:
image = image.astype(np.float32)
if len(image.shape) == 2:
image = np.tile(image[:,:,None], 3)
elif len(image.shape) == 4:
image = image[:,:,:,0]
height, width, rgb = image.shape
if width == height:
resized_image = cv2.resize(image, (target_height,target_width))
elif height < width:
resized_image = cv2.resize(image, (int(width * float(target_height)/height), target_width))
cropping_length = int((resized_image.shape[1] - target_height) / 2)
resized_image = resized_image[:,cropping_length:resized_image.shape[1] - cropping_length]
else:
resized_image = cv2.resize(image, (target_height, int(height * float(target_width) / width)))
cropping_length = int((resized_image.shape[0] - target_width) / 2)
resized_image = resized_image[cropping_length:resized_image.shape[0] - cropping_length,:]
return cv2.resize(resized_image, (target_height, target_width))
def read_image(self,path=None):
# parses image from file path and crops/resizes
if path is None:
path=test_image_path
img = crop_image(path, target_height=224, target_width=224)
if img.shape[2] == 4:
img = img[:,:,:3]
img = img[None, ...]
return img
def get_caption(self,x=None):
#gets caption from an image by feeding it through imported VGG16 graph
if self.from_image:
feat = read_image(x)
fc7 = self.sess.run(graph.get_tensor_by_name("import/Relu_1:0"), feed_dict={self.images:feat})
else:
fc7=np.load(x,'r')
generated_word_index= self.sess.run(self.generated_words, feed_dict={self.img:fc7})
generated_word_index = np.hstack(generated_word_index)
generated_words = [ixtoword[x] for x in generated_word_index]
punctuation = np.argmax(np.array(generated_words) == '.')+1
generated_words = generated_words[:punctuation]
generated_sentence = ' '.join(generated_words)
return (generated_sentence)
def get_data(annotation_path, feature_path):
#load training/validation data
annotations = pd.read_table(annotation_path, sep='\t', header=None, names=['image', 'caption'])
return np.load(feature_path,'r'), annotations['caption'].values
def preProBuildWordVocab(sentence_iterator, word_count_threshold=30): # function from Andre Karpathy's NeuralTalk
#process and vectorize training/validation captions
print('preprocessing %d word vocab' % (word_count_threshold, ))
word_counts = {}
nsents = 0
for sent in sentence_iterator:
nsents += 1
for w in sent.lower().split(' '):
word_counts[w] = word_counts.get(w, 0) + 1
vocab = [w for w in word_counts if word_counts[w] >= word_count_threshold]
print('preprocessed words %d -> %d' % (len(word_counts), len(vocab)))
ixtoword = {}
ixtoword[0] = '.'
wordtoix = {}
wordtoix['#START#'] = 0
ix = 1
for w in vocab:
wordtoix[w] = ix
ixtoword[ix] = w
ix += 1
word_counts['.'] = nsents
bias_init_vector = np.array([1.0*word_counts[ixtoword[i]] for i in ixtoword])
bias_init_vector /= np.sum(bias_init_vector)
bias_init_vector = np.log(bias_init_vector)
bias_init_vector -= np.max(bias_init_vector)
return wordtoix, ixtoword, bias_init_vector.astype(np.float32)
dim_embed = 256
dim_hidden = 256
dim_in = 4096
batch_size = 128
momentum = 0.9
n_epochs = 25
def train(learning_rate=0.001, continue_training=False):
tf.reset_default_graph()
feats, captions = get_data(annotation_path, feature_path)
wordtoix, ixtoword, init_b = preProBuildWordVocab(captions)
np.save('data/ixtoword', ixtoword)
print ('num words:',len(ixtoword))
sess = tf.InteractiveSession()
n_words = len(wordtoix)
maxlen = 30
X, final_captions, mask, _map = load_text(2**19-3,captions)
running_decay=1
decay_rate=0.9999302192204246
# with tf.device('/gpu:0'):
caption_generator = Caption_Generator(dim_in, dim_hidden, dim_embed, batch_size, maxlen+2, n_words, np.zeros(n_z).astype(np.float32),n_input=n_input,n_lstm_input=n_lstm_input,n_z=n_z)
loss, image, sentence, mask = caption_generator.build_model()
saver = tf.train.Saver(max_to_keep=100)
train_op = tf.train.AdamOptimizer(learning_rate).minimize(loss)
tf.global_variables_initializer().run()
tf.train.Saver(var_list=caption_generator.all_encoding_weights,max_to_keep=100).restore(sess,tf.train.latest_checkpoint('modelsvardefdefvarall'))
if continue_training:
saver.restore(sess,tf.train.latest_checkpoint(model_path))
losses=[]
for epoch in range(n_epochs):
if epoch==1:
for w in caption_generator.all_encoding_weights:
w.trainable=True
index = (np.arange(len(feats)).astype(int))
np.random.shuffle(index)
index=index[:]
i=0
for start, end in zip( range(0, len(index), batch_size), range(batch_size, len(index), batch_size)):
#format data batch
current_feats = feats[index[start:end]]
current_captions = captions[index[start:end]]
current_caption_ind = [x for x in map(lambda cap: [wordtoix[word] for word in cap.lower().split(' ')[:-1] if word in wordtoix], current_captions)]
current_caption_matrix = sequence.pad_sequences(current_caption_ind, padding='post', maxlen=maxlen+1)
current_caption_matrix = np.hstack( [np.full( (len(current_caption_matrix),1), 0), current_caption_matrix] )
current_mask_matrix = np.zeros((current_caption_matrix.shape[0], current_caption_matrix.shape[1]))
nonzeros = np.array([x for x in map(lambda x: (x != 0).sum()+2, current_caption_matrix )])
current_capts=final_captions[index[start:end]]
for ind, row in enumerate(current_mask_matrix):
row[:nonzeros[ind]] = 1
_, loss_value,total_loss = sess.run([train_op, caption_generator.print_loss,loss], feed_dict={
image: current_feats.astype(np.float32),
caption_generator.output_placeholder : current_caption_matrix.astype(np.int32),
mask : current_mask_matrix.astype(np.float32),
sentence : current_capts.astype(np.float32)
})
print("Current Cost: ", loss_value, "\t Epoch {}/{}".format(epoch, n_epochs), "\t Iter {}/{}".format(start,len(feats)))
losses.append(loss_value*running_decay)
# if epoch<9:
# if i%3==0:
# running_decay*=decay_rate
# else:
# if i%8==0:
# running_decay*=decay_rate
i+=1
print losses[-1]
print("Saving the model from epoch: ", epoch)
pkl.dump(losses,open('losses/loss_e2e.pkl','wb'))
saver.save(sess, os.path.join(model_path, 'model'), global_step=epoch)
learning_rate *= 0.95
def test(sess,image,generated_words,ixtoword,idx=0): # Naive greedy search
feats, captions = get_data(annotation_path, feature_path)
feat = np.array([feats[idx]])
saver = tf.train.Saver()
sanity_check= False
# sanity_check=True
if not sanity_check:
saved_path=tf.train.latest_checkpoint(model_path)
saver.restore(sess, saved_path)
else:
tf.global_variables_initializer().run()
generated_word_index= sess.run(generated_words, feed_dict={image:feat})
generated_word_index = np.hstack(generated_word_index)
generated_sentence = [ixtoword[x] for x in generated_word_index]
print(generated_sentence)
if __name__=='__main__':
model_path = './models/tensorflowocs'
feature_path = './data/feats.npy'
annotation_path = './data/results_20130124.token'
import sys
feats, captions = get_data(annotation_path, feature_path)
n_input=50000
binary_dim=n_input
n_lstm_input=512
n_z=256
zero_end_tok=True
form2=True
vanilla=True
onehot=False
same_embedding=False
if sys.argv[1]=='train':
train()
elif sys.argv[1]=='test':
ixtoword = np.load('data/ixtoword.npy').tolist()
n_words = len(ixtoword)
maxlen=15
sess = tf.InteractiveSession()
batch_size=1
caption_generator = Caption_Generator(dim_in, dim_hidden, dim_embed, 1, maxlen+2, n_words,n_input=n_input,n_lstm_input=n_lstm_input,n_z=n_z)
image, generated_words = caption_generator.build_generator(maxlen=maxlen)
test(sess,image,generated_words,ixtoword,1)