-
Notifications
You must be signed in to change notification settings - Fork 515
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
335 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,87 @@ | ||
import torch | ||
from transformers import AutoTokenizer | ||
|
||
from outlines.fsm.guide import AlignmentGuide, RegexGuide | ||
from outlines.models.transformers import TransformerTokenizer | ||
|
||
|
||
class MockTokenizer: | ||
def __init__(self, vocabulary): | ||
self.vocabulary = {tok: i for i, tok in enumerate(vocabulary)} | ||
self.vocabulary["<eos>"] = len(self.vocabulary) | ||
self.special_tokens = {"<eos>"} | ||
self.eos_token_id = self.vocabulary["<eos>"] | ||
self.pad_token_id = -1 | ||
|
||
self.inverse_vocabulary = {i: tok for tok, i in self.vocabulary.items()} | ||
|
||
def convert_token_to_string(self, token): | ||
return token | ||
|
||
def decode(self, token_ids): | ||
if token_ids == []: | ||
return "" | ||
if isinstance(list(token_ids)[0], list): | ||
return [ | ||
"".join(map(self.inverse_vocabulary.get, token_ids_sublist)) | ||
for token_ids_sublist in token_ids | ||
] | ||
return [self.inverse_vocabulary[int(token_id)] for token_id in token_ids] | ||
|
||
def encode(self, texts): | ||
""" | ||
Encodes the input texts by finding the longest matching tokens in the vocabulary. | ||
""" | ||
seqs = [] | ||
for text in texts: | ||
tokens = [] | ||
while text: | ||
token = next( | ||
( | ||
tok | ||
for tok in sorted(self.vocabulary, key=len, reverse=True) | ||
if text.startswith(tok) | ||
), | ||
None, | ||
) | ||
if token is None: | ||
tokens = [self.pad_token_id] | ||
break | ||
tokens.append(self.vocabulary[token]) | ||
text = text[len(token) :] | ||
seqs.append(tokens) | ||
|
||
max_len = max(len(seq) for seq in seqs) | ||
padded_seqs = torch.tensor( | ||
[seq + [self.pad_token_id] * (max_len - len(seq)) for seq in seqs] | ||
) | ||
return padded_seqs, None | ||
|
||
|
||
def test_alignment_with_pseudo_token_and_regex_guide(): | ||
# Mock tokenizer with the vocabulary for "hello", "world", "wo", "rld", and "!" | ||
tokenizer = MockTokenizer(["hello", " world", " wo", "rld", "!"]) | ||
prompt = "hello wo" | ||
|
||
# Create a RegexGuide that expects the sequence "rld!" | ||
child_guide = RegexGuide(regex_string="rld!", tokenizer=tokenizer) | ||
|
||
# Create the AlignmentGuide with the child guide | ||
guide = AlignmentGuide(prompt, tokenizer, child_guide=child_guide) | ||
|
||
assert guide.alignment_prompt == "hello" | ||
|
||
# assert " world!" is legal and final | ||
seq = [tokenizer.vocabulary[" world"], tokenizer.vocabulary["!"]] | ||
assert guide.accepts(seq) | ||
assert guide.is_final_state(guide.derive(seq, guide.initial_state)) is True | ||
|
||
|
||
def test_alignment_guide_gpt2_url(): | ||
# Based on notebook | ||
# https://github.com/guidance-ai/guidance/blob/af63e6/notebooks/tutorials/token_healing.ipynb#L4 | ||
tokenizer = TransformerTokenizer(AutoTokenizer.from_pretrained("gpt2")) | ||
prompt = "The url of Google is http:" | ||
guide = AlignmentGuide(prompt, tokenizer) | ||
assert guide.alignment_prompt == "The url of Google is http" | ||
assert guide.accepts(list(tokenizer.encode("://google.com")[0][0])) |