forked from tinygrad/tinygrad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
efficientnet.py
88 lines (78 loc) · 2.82 KB
/
efficientnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# load weights from
# https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b0-355c32eb.pth
# a rough copy of
# https://github.com/lukemelas/EfficientNet-PyTorch/blob/master/efficientnet_pytorch/model.py
import sys
import ast
import time
import numpy as np
from PIL import Image
from tinygrad.tensor import Tensor
from tinygrad.helpers import getenv, fetch, Timing
from tinygrad.engine.jit import TinyJit
from extra.models.efficientnet import EfficientNet
np.set_printoptions(suppress=True)
# TODO: you should be able to put these in the jitted function
bias = Tensor([0.485, 0.456, 0.406])
scale = Tensor([0.229, 0.224, 0.225])
@TinyJit
def _infer(model, img):
img = img.permute((2,0,1))
img = img / 255.0
img = img - bias.reshape((1,-1,1,1))
img = img / scale.reshape((1,-1,1,1))
return model.forward(img).realize()
def infer(model, img):
# preprocess image
aspect_ratio = img.size[0] / img.size[1]
img = img.resize((int(224*max(aspect_ratio,1.0)), int(224*max(1.0/aspect_ratio,1.0))))
img = np.array(img)
y0,x0=(np.asarray(img.shape)[:2]-224)//2
retimg = img = img[y0:y0+224, x0:x0+224]
# if you want to look at the image
"""
import matplotlib.pyplot as plt
plt.imshow(img)
plt.show()
"""
# run the net
out = _infer(model, Tensor(img.astype("float32"))).numpy()
# if you want to look at the outputs
"""
import matplotlib.pyplot as plt
plt.plot(out[0])
plt.show()
"""
return out, retimg
if __name__ == "__main__":
# instantiate my net
model = EfficientNet(getenv("NUM", 0))
model.load_from_pretrained()
# category labels
lbls = ast.literal_eval(fetch("https://gist.githubusercontent.com/yrevar/942d3a0ac09ec9e5eb3a/raw/238f720ff059c1f82f368259d1ca4ffa5dd8f9f5/imagenet1000_clsidx_to_labels.txt").read_text())
# load image and preprocess
url = sys.argv[1] if len(sys.argv) >= 2 else "https://raw.githubusercontent.com/tinygrad/tinygrad/master/docs/showcase/stable_diffusion_by_tinygrad.jpg"
if url == 'webcam':
import cv2
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_BUFFERSIZE, 1)
while 1:
_ = cap.grab() # discard one frame to circumvent capture buffering
ret, frame = cap.read()
img = Image.fromarray(frame[:, :, [2,1,0]])
lt = time.monotonic_ns()
out, retimg = infer(model, img)
print(f"{(time.monotonic_ns()-lt)*1e-6:7.2f} ms", np.argmax(out), np.max(out), lbls[np.argmax(out)])
SCALE = 3
simg = cv2.resize(retimg, (224*SCALE, 224*SCALE))
retimg = cv2.cvtColor(simg, cv2.COLOR_RGB2BGR)
cv2.imshow('capture', retimg)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
else:
img = Image.open(fetch(url))
with Timing("did inference in "):
out, _ = infer(model, img)
print(np.argmax(out), np.max(out), lbls[np.argmax(out)])