Skip to content

Latest commit

 

History

History
261 lines (200 loc) · 5.73 KB

File metadata and controls

261 lines (200 loc) · 5.73 KB
comments edit_url
true

题目描述

给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1

你可以认为每种硬币的数量是无限的。

 

示例 1:

输入:coins = [1, 2, 5], amount = 11
输出:3 
解释:11 = 5 + 5 + 1

示例 2:

输入:coins = [2], amount = 3
输出:-1

示例 3:

输入:coins = [1], amount = 0
输出:0

示例 4:

输入:coins = [1], amount = 1
输出:1

示例 5:

输入:coins = [1], amount = 2
输出:2

 

提示:

  • 1 <= coins.length <= 12
  • 1 <= coins[i] <= 231 - 1
  • 0 <= amount <= 104

 

注意:本题与主站 322 题相同: https://leetcode.cn/problems/coin-change/

解法

方法一

Python3

class Solution:
    def coinChange(self, coins: List[int], amount: int) -> int:
        dp = [amount + 1] * (amount + 1)
        dp[0] = 0
        for coin in coins:
            for j in range(coin, amount + 1):
                dp[j] = min(dp[j], dp[j - coin] + 1)
        return -1 if dp[-1] > amount else dp[-1]

Java

class Solution {

    public int coinChange(int[] coins, int amount) {
        int m = coins.length;
        int[][] dp = new int[m + 1][amount + 1];
        for (int i = 0; i <= m; ++i) {
            Arrays.fill(dp[i], amount + 1);
        }
        dp[0][0] = 0;
        for (int i = 1; i <= m; ++i) {
            int v = coins[i - 1];
            for (int j = 0; j <= amount; ++j) {
                for (int k = 0; k * v <= j; ++k) {
                    dp[i][j] = Math.min(dp[i][j], dp[i - 1][j - k * v] + k);
                }
            }
        }
        return dp[m][amount] > amount ? -1 : dp[m][amount];
    }
}

C++

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        vector<int> dp(amount + 1, amount + 1);
        dp[0] = 0;
        for (auto& coin : coins)
            for (int j = coin; j <= amount; ++j)
                dp[j] = min(dp[j], dp[j - coin] + 1);
        return dp[amount] > amount ? -1 : dp[amount];
    }
};

Go

func coinChange(coins []int, amount int) int {
	dp := make([]int, amount+1)
	for i := 1; i <= amount; i++ {
		dp[i] = amount + 1
	}
	for _, coin := range coins {
		for j := coin; j <= amount; j++ {
			dp[j] = min(dp[j], dp[j-coin]+1)
		}
	}
	if dp[amount] > amount {
		return -1
	}
	return dp[amount]
}

JavaScript

/**
 * @param {number[]} coins
 * @param {number} amount
 * @return {number}
 */
var coinChange = function (coins, amount) {
    let dp = Array(amount + 1).fill(amount + 1);
    dp[0] = 0;
    for (const coin of coins) {
        for (let j = coin; j <= amount; ++j) {
            dp[j] = Math.min(dp[j], dp[j - coin] + 1);
        }
    }
    return dp[amount] > amount ? -1 : dp[amount];
};

Swift

class Solution {
    func coinChange(_ coins: [Int], _ amount: Int) -> Int {
        var dp = [Int](repeating: amount + 1, count: amount + 1)
        dp[0] = 0

        for coin in coins {
            if coin > amount { continue }
            for j in coin...amount {
                dp[j] = min(dp[j], dp[j - coin] + 1)
            }
        }

        return dp[amount] > amount ? -1 : dp[amount]
    }
}

方法二

Java

class Solution {

    public int coinChange(int[] coins, int amount) {
        int m = coins.length;
        int[][] dp = new int[m + 1][amount + 1];
        for (int i = 0; i <= m; ++i) {
            Arrays.fill(dp[i], amount + 1);
        }
        dp[0][0] = 0;
        for (int i = 1; i <= m; ++i) {
            int v = coins[i - 1];
            for (int j = 0; j <= amount; ++j) {
                dp[i][j] = dp[i - 1][j];
                if (j >= v) {
                    dp[i][j] = Math.min(dp[i][j], dp[i][j - v] + 1);
                }
            }
        }
        return dp[m][amount] > amount ? -1 : dp[m][amount];
    }
}

方法三

Java

class Solution {

    public int coinChange(int[] coins, int amount) {
        int[] dp = new int[amount + 1];
        Arrays.fill(dp, amount + 1);
        dp[0] = 0;
        for (int coin : coins) {
            for (int j = coin; j <= amount; j++) {
                dp[j] = Math.min(dp[j], dp[j - coin] + 1);
            }
        }
        return dp[amount] > amount ? -1 : dp[amount];
    }
}