comments | edit_url |
---|---|
true |
给定一个无重复元素的正整数数组 candidates
和一个正整数 target
,找出 candidates
中所有可以使数字和为目标数 target
的唯一组合。
candidates
中的数字可以无限制重复被选取。如果至少一个所选数字数量不同,则两种组合是唯一的。
对于给定的输入,保证和为 target
的唯一组合数少于 150
个。
示例 1:
输入: candidates =[2,3,6,7],
target =7
输出: [[7],[2,2,3]]
示例 2:
输入: candidates = [2,3,5],
target = 8
输出: [[2,2,2,2],[2,3,3],[3,5]]
示例 3:
输入: candidates = [2],
target = 1
输出: []
示例 4:
输入: candidates =[1],
target =1
输出: [[1]]
示例 5:
输入: candidates =[1],
target =2
输出: [[1,1]]
提示:
1 <= candidates.length <= 30
1 <= candidates[i] <= 200
candidate
中的每个元素都是独一无二的。1 <= target <= 500
注意:本题与主站 39 题相同: https://leetcode.cn/problems/combination-sum/
class Solution:
def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]:
ans = []
n = len(candidates)
def dfs(s, u, t):
if s == target:
ans.append(t.copy())
return
if s > target:
return
for i in range(u, n):
c = candidates[i]
t.append(c)
dfs(s + c, i, t)
t.pop()
dfs(0, 0, [])
return ans
class Solution {
private List<List<Integer>> ans;
private int target;
private int[] candidates;
public List<List<Integer>> combinationSum(int[] candidates, int target) {
ans = new ArrayList<>();
this.target = target;
this.candidates = candidates;
dfs(0, 0, new ArrayList<>());
return ans;
}
private void dfs(int s, int u, List<Integer> t) {
if (s == target) {
ans.add(new ArrayList<>(t));
return;
}
if (s > target) {
return;
}
for (int i = u; i < candidates.length; ++i) {
int c = candidates[i];
t.add(c);
dfs(s + c, i, t);
t.remove(t.size() - 1);
}
}
}
class Solution {
public:
vector<vector<int>> ans;
vector<int> candidates;
int target;
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
this->candidates = candidates;
this->target = target;
vector<int> t;
dfs(0, 0, t);
return ans;
}
void dfs(int s, int u, vector<int>& t) {
if (s == target) {
ans.push_back(t);
return;
}
if (s > target) return;
for (int i = u; i < candidates.size(); ++i) {
int c = candidates[i];
t.push_back(c);
dfs(s + c, i, t);
t.pop_back();
}
}
};
func combinationSum(candidates []int, target int) [][]int {
var ans [][]int
var dfs func(s, u int, t []int)
dfs = func(s, u int, t []int) {
if s == target {
ans = append(ans, append([]int(nil), t...))
return
}
if s > target {
return
}
for i := u; i < len(candidates); i++ {
c := candidates[i]
t = append(t, c)
dfs(s+c, i, t)
t = t[:len(t)-1]
}
}
var t []int
dfs(0, 0, t)
return ans
}
using System;
using System.Collections.Generic;
using System.Linq;
public class Solution
{
public IList<IList<int>> CombinationSum(int[] candidates, int target)
{
Array.Sort(candidates);
candidates = candidates.Distinct().ToArray();
var paths = new List<int>[target + 1];
paths[0] = new List<int>();
foreach (var c in candidates)
{
for (var j = c; j <= target; ++j)
{
if (paths[j - c] != null)
{
if (paths[j] == null)
{
paths[j] = new List<int>();
}
paths[j].Add(c);
}
}
}
var results = new List<IList<int>>();
if (paths[target] != null) GenerateResults(results, new Stack<int>(), paths, target, paths[target].Count - 1);
return results;
}
private void GenerateResults(IList<IList<int>> results, Stack<int> result, List<int>[] paths, int remaining,
int maxIndex)
{
if (remaining == 0)
{
results.Add(new List<int>(result));
return;
}
for (var i = maxIndex; i >= 0; --i)
{
var value = paths[remaining][i];
result.Push(value);
var nextMaxIndex = paths[remaining - value].BinarySearch(value);
if (nextMaxIndex < 0)
{
nextMaxIndex = ~nextMaxIndex - 1;
}
GenerateResults(results, result, paths, remaining - value, nextMaxIndex);
result.Pop();
}
}
}
class Solution {
private var ans: [[Int]] = []
private var target: Int = 0
private var candidates: [Int] = []
func combinationSum(_ candidates: [Int], _ target: Int) -> [[Int]] {
self.ans = []
self.target = target
self.candidates = candidates
dfs(0, 0, [])
return ans
}
private func dfs(_ sum: Int, _ index: Int, _ current: [Int]) {
if sum == target {
ans.append(current)
return
}
if sum > target {
return
}
for i in index..<candidates.count {
let candidate = candidates[i]
dfs(sum + candidate, i, current + [candidate])
}
}
}