From e1b7e76d28ac33e7368d1970ce0421c5b22f5bef Mon Sep 17 00:00:00 2001 From: "martin.holmer@gmail.com" Date: Thu, 22 Aug 2024 10:07:03 -0400 Subject: [PATCH] Add more variables to var dictionary --- .../datasets/taxcalc_dataset.py | 47 +++++++++++-------- 1 file changed, 27 insertions(+), 20 deletions(-) diff --git a/tax_microdata_benchmarking/datasets/taxcalc_dataset.py b/tax_microdata_benchmarking/datasets/taxcalc_dataset.py index 592c96b7..d8d86b6c 100644 --- a/tax_microdata_benchmarking/datasets/taxcalc_dataset.py +++ b/tax_microdata_benchmarking/datasets/taxcalc_dataset.py @@ -117,16 +117,41 @@ def pe(variable): var = {} for tcname, pename in vnames.items(): var[tcname] = pe(pename) - zeros = np.zeros_like(var["RECID"]) + zeros = np.zeros_like(var["RECID"], dtype=int) for tcname in zero_names: var[tcname] = zeros - var["E00600"] = pe("non_qualified_dividend_income") + pe( "qualified_dividend_income" ) var["E01500"] = pe("tax_exempt_pension_income") + pe( "taxable_pension_income" ) + var["MARS"] = ( + pd.Series(pe("filing_status")) + .map( + { + "SINGLE": 1, + "JOINT": 2, + "SEPARATE": 3, + "HEAD_OF_HOUSEHOLD": 4, + "SURVIVING_SPOUSE": 5, + } + ) + .values + ) + var["EIC"] = np.minimum(pe("eitc_child_count"), 3) + ones = np.ones_like(var["RECID"], dtype=int) + var["FLPDYR"] = ones * year + if "puf" in pe_dataset.__name__.lower(): + var["data_source"] = ones + else: + var["data_source"] = zeros + var["e02000"] = ( + pe("rental_income") + + pe("partnership_s_corp_income") + + pe("estate_income") + + pe("farm_rent_income") + ) df = pd.DataFrame(var) @@ -179,8 +204,6 @@ def pe(variable): df["E03150"] = pe("traditional_ira_contributions") df["E24515"] = pe("unrecaptured_section_1250_gain") df["E27200"] = pe("farm_rent_income") - """ - df["MARS"] = ( pd.Series(pe("filing_status")) .map( @@ -194,25 +217,16 @@ def pe(variable): ) .values ) - - """ df["RECID"] = pe("household_id") df["S006"] = pe("tax_unit_weight") - """ - - """ df["a_lineno"] = 0 # TD-specific (CPS matched person ID) df["agi_bin"] = 0 # TD-specific (AGI bin) df["h_seq"] = 0 # TD-specific (CPS matched household ID) df["ffpos"] = 0 # TD-specific (CPS matched family ID) df["fips"] = 0 # No FIPS data df["DSI"] = 0 # Claimed as dependent on another return, assume not - """ - df["EIC"] = np.minimum(pe("eitc_child_count"), 3) df["FLPDYR"] = year - - """ df["MIDR"] = 0 # Separately filing spouse itemizes, assume not df["PT_SSTB_income"] = ( 0 # Business income is from specified service trade assume not @@ -226,13 +240,8 @@ def pe(variable): df["mcare_ben"] = 0 # Medicare benefits, assume none df["mcaid_ben"] = 0 # Medicaid benefits, assume none df["other_ben"] = 0 # Other benefits, assume none - """ - - """ df["PT_binc_w2_wages"] = pe("w2_wages_from_qualified_business") df["PT_ubia_property"] = 0 - """ - df["data_source"] = 1 if "puf" in pe_dataset.__name__.lower() else 0 df["e02000"] = ( pe("rental_income") @@ -240,8 +249,6 @@ def pe(variable): + pe("estate_income") + pe("farm_rent_income") ) - - """ df["e20400"] = pe("misc_deduction") df["e07300"] = pe("foreign_tax_credit") df["e62900"] = pe("amt_foreign_tax_credit")