-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathparser.py
840 lines (710 loc) · 23.8 KB
/
parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
#! /usr/bin/python3.9
import brain
import brain_util as bu
import numpy as np
import pptree
import json
import copy
from collections import namedtuple
from collections import defaultdict
from enum import Enum
# BrainAreas
LEX = "LEX"
DET = "DET"
SUBJ = "SUBJ"
OBJ = "OBJ"
VERB = "VERB"
PREP = "PREP"
PREP_P = "PREP_P"
ADJ = "ADJ"
ADVERB = "ADVERB"
# Unique to Russian
NOM = "NOM"
ACC = "ACC"
DAT = "DAT"
# Fixed area stats for explicit areas
LEX_SIZE = 20
# Actions
DISINHIBIT = "DISINHIBIT"
INHIBIT = "INHIBIT"
# Skip firing in this round, just activate the word in LEX/DET/other word areas.
# All other rules for these lexical items should be in PRE_RULES.
ACTIVATE_ONLY = "ACTIVATE_ONLY"
CLEAR_DET = "CLEAR_DET"
AREAS = [LEX, DET, SUBJ, OBJ, VERB, ADJ, ADVERB, PREP, PREP_P]
EXPLICIT_AREAS = [LEX]
RECURRENT_AREAS = [SUBJ, OBJ, VERB, ADJ, ADVERB, PREP, PREP_P]
RUSSIAN_AREAS = [LEX, NOM, VERB, ACC, DAT]
RUSSIAN_EXPLICIT_AREAS = [LEX]
RUSSIAN_LEX_SIZE = 7
AreaRule = namedtuple('AreaRule', ['action', 'area', 'index'])
FiberRule = namedtuple('FiberRule', ['action', 'area1', 'area2', 'index'])
FiringRule = namedtuple('FiringRule', ['action'])
OtherRule = namedtuple('OtherRule', ['action'])
def generic_noun(index):
return {
"index": index,
"PRE_RULES": [
FiberRule(DISINHIBIT, LEX, SUBJ, 0),
FiberRule(DISINHIBIT, LEX, OBJ, 0),
FiberRule(DISINHIBIT, LEX, PREP_P, 0),
FiberRule(DISINHIBIT, DET, SUBJ, 0),
FiberRule(DISINHIBIT, DET, OBJ, 0),
FiberRule(DISINHIBIT, DET, PREP_P, 0),
FiberRule(DISINHIBIT, ADJ, SUBJ, 0),
FiberRule(DISINHIBIT, ADJ, OBJ, 0),
FiberRule(DISINHIBIT, ADJ, PREP_P, 0),
FiberRule(DISINHIBIT, VERB, OBJ, 0),
FiberRule(DISINHIBIT, PREP_P, PREP, 0),
FiberRule(DISINHIBIT, PREP_P, SUBJ, 0),
FiberRule(DISINHIBIT, PREP_P, OBJ, 0),
],
"POST_RULES": [
AreaRule(INHIBIT, DET, 0),
AreaRule(INHIBIT, ADJ, 0),
AreaRule(INHIBIT, PREP_P, 0),
AreaRule(INHIBIT, PREP, 0),
FiberRule(INHIBIT, LEX, SUBJ, 0),
FiberRule(INHIBIT, LEX, OBJ, 0),
FiberRule(INHIBIT, LEX, PREP_P, 0),
FiberRule(INHIBIT, ADJ, SUBJ, 0),
FiberRule(INHIBIT, ADJ, OBJ, 0),
FiberRule(INHIBIT, ADJ, PREP_P, 0),
FiberRule(INHIBIT, DET, SUBJ, 0),
FiberRule(INHIBIT, DET, OBJ, 0),
FiberRule(INHIBIT, DET, PREP_P, 0),
FiberRule(INHIBIT, VERB, OBJ, 0),
FiberRule(INHIBIT, PREP_P, PREP, 0),
FiberRule(INHIBIT, PREP_P, VERB, 0),
FiberRule(DISINHIBIT, LEX, SUBJ, 1),
FiberRule(DISINHIBIT, LEX, OBJ, 1),
FiberRule(DISINHIBIT, DET, SUBJ, 1),
FiberRule(DISINHIBIT, DET, OBJ, 1),
FiberRule(DISINHIBIT, ADJ, SUBJ, 1),
FiberRule(DISINHIBIT, ADJ, OBJ, 1),
FiberRule(INHIBIT, PREP_P, SUBJ, 0),
FiberRule(INHIBIT, PREP_P, OBJ, 0),
FiberRule(INHIBIT, VERB, ADJ, 0),
]
}
def generic_trans_verb(index):
return {
"index": index,
"PRE_RULES": [
FiberRule(DISINHIBIT, LEX, VERB, 0),
FiberRule(DISINHIBIT, VERB, SUBJ, 0),
FiberRule(DISINHIBIT, VERB, ADVERB, 0),
AreaRule(DISINHIBIT, ADVERB, 1),
],
"POST_RULES": [
FiberRule(INHIBIT, LEX, VERB, 0),
AreaRule(DISINHIBIT, OBJ, 0),
AreaRule(INHIBIT, SUBJ, 0),
AreaRule(INHIBIT, ADVERB, 0),
FiberRule(DISINHIBIT, PREP_P, VERB, 0),
]
}
def generic_intrans_verb(index):
return {
"index": index,
"PRE_RULES": [
FiberRule(DISINHIBIT, LEX, VERB, 0),
FiberRule(DISINHIBIT, VERB, SUBJ, 0),
FiberRule(DISINHIBIT, VERB, ADVERB, 0),
AreaRule(DISINHIBIT, ADVERB, 1),
],
"POST_RULES": [
FiberRule(INHIBIT, LEX, VERB, 0),
AreaRule(INHIBIT, SUBJ, 0),
AreaRule(INHIBIT, ADVERB, 0),
FiberRule(DISINHIBIT, PREP_P, VERB, 0),
]
}
def generic_copula(index):
return {
"index": index,
"PRE_RULES": [
FiberRule(DISINHIBIT, LEX, VERB, 0),
FiberRule(DISINHIBIT, VERB, SUBJ, 0),
],
"POST_RULES": [
FiberRule(INHIBIT, LEX, VERB, 0),
AreaRule(DISINHIBIT, OBJ, 0),
AreaRule(INHIBIT, SUBJ, 0),
FiberRule(DISINHIBIT, ADJ, VERB, 0)
]
}
def generic_adverb(index):
return {
"index": index,
"PRE_RULES": [
AreaRule(DISINHIBIT, ADVERB, 0),
FiberRule(DISINHIBIT, LEX, ADVERB, 0)
],
"POST_RULES": [
FiberRule(INHIBIT, LEX, ADVERB, 0),
AreaRule(INHIBIT, ADVERB, 1),
]
}
def generic_determinant(index):
return {
"index": index,
"PRE_RULES": [
AreaRule(DISINHIBIT, DET, 0),
FiberRule(DISINHIBIT, LEX, DET, 0)
],
"POST_RULES": [
FiberRule(INHIBIT, LEX, DET, 0),
FiberRule(INHIBIT, VERB, ADJ, 0),
]
}
def generic_adjective(index):
return {
"index": index,
"PRE_RULES": [
AreaRule(DISINHIBIT, ADJ, 0),
FiberRule(DISINHIBIT, LEX, ADJ, 0)
],
"POST_RULES": [
FiberRule(INHIBIT, LEX, ADJ, 0),
FiberRule(INHIBIT, VERB, ADJ, 0),
]
}
def generic_preposition(index):
return {
"index": index,
"PRE_RULES": [
AreaRule(DISINHIBIT, PREP, 0),
FiberRule(DISINHIBIT, LEX, PREP, 0),
],
"POST_RULES": [
FiberRule(INHIBIT, LEX, PREP, 0),
AreaRule(DISINHIBIT, PREP_P, 0),
FiberRule(INHIBIT, LEX, SUBJ, 1),
FiberRule(INHIBIT, LEX, OBJ, 1),
FiberRule(INHIBIT, DET, SUBJ, 1),
FiberRule(INHIBIT, DET, OBJ, 1),
FiberRule(INHIBIT, ADJ, SUBJ, 1),
FiberRule(INHIBIT, ADJ, OBJ, 1),
]
}
LEXEME_DICT = {
"the" : generic_determinant(0),
"a": generic_determinant(1),
"dogs" : generic_noun(2),
"cats" : generic_noun(3),
"mice" : generic_noun(4),
"people" : generic_noun(5),
"chase" : generic_trans_verb(6),
"love" : generic_trans_verb(7),
"bite" : generic_trans_verb(8),
"of" : generic_preposition(9),
"big": generic_adjective(10),
"bad": generic_adjective(11),
"run": generic_intrans_verb(12),
"fly": generic_intrans_verb(13),
"quickly": generic_adverb(14),
"in": generic_preposition(15),
"are": generic_copula(16),
"man": generic_noun(17),
"woman": generic_noun(18),
"saw": generic_trans_verb(19),
}
def generic_russian_verb(index):
return {
"area": LEX,
"index": index,
"PRE_RULES": [
AreaRule(DISINHIBIT, VERB, 0),
FiberRule(DISINHIBIT, LEX, VERB, 0),
FiberRule(DISINHIBIT, VERB, NOM, 0),
FiberRule(DISINHIBIT, VERB, ACC, 0),
],
"POST_RULES": [
FiberRule(INHIBIT, LEX, VERB, 0)
]
}
def generic_russian_ditransitive_verb(index):
return {
"area": LEX,
"index": index,
"PRE_RULES": [
AreaRule(DISINHIBIT, VERB, 0),
FiberRule(DISINHIBIT, LEX, VERB, 0),
FiberRule(DISINHIBIT, VERB, NOM, 0),
FiberRule(DISINHIBIT, VERB, ACC, 0),
FiberRule(DISINHIBIT, VERB, DAT, 0),
],
"POST_RULES": [
FiberRule(INHIBIT, LEX, VERB, 0)
]
}
def generic_russian_nominative_noun(index):
return {
"area": LEX,
"index": index,
"PRE_RULES": [
AreaRule(DISINHIBIT, NOM, 0),
FiberRule(DISINHIBIT, LEX, NOM, 0),
],
"POST_RULES": [
FiberRule(INHIBIT, LEX, NOM, 0)
]
}
def generic_russian_accusative_noun(index):
return {
"area": LEX,
"index": index,
"PRE_RULES": [
AreaRule(DISINHIBIT, ACC, 0),
FiberRule(DISINHIBIT, LEX, ACC, 0),
],
"POST_RULES": [
FiberRule(INHIBIT, LEX, ACC, 0)
]
}
def generic_russian_dative_noun(index):
return {
"area": LEX,
"index": index,
"PRE_RULES": [
AreaRule(DISINHIBIT, DAT, 0),
FiberRule(DISINHIBIT, LEX, DAT, 0),
],
"POST_RULES": [
FiberRule(INHIBIT, LEX, DAT, 0)
]
}
RUSSIAN_LEXEME_DICT = {
"vidit": generic_russian_verb(0),
"lyubit": generic_russian_verb(1),
"kot": generic_russian_nominative_noun(2),
"kota": generic_russian_accusative_noun(2),
"sobaka": generic_russian_nominative_noun(3),
"sobaku": generic_russian_accusative_noun(3),
"sobakie": generic_russian_dative_noun(3),
"kotu": generic_russian_dative_noun(2),
"dayet": generic_russian_ditransitive_verb(4)
}
ENGLISH_READOUT_RULES = {
VERB: [LEX, SUBJ, OBJ, PREP_P, ADVERB, ADJ],
SUBJ: [LEX, DET, ADJ, PREP_P],
OBJ: [LEX, DET, ADJ, PREP_P],
PREP_P: [LEX, PREP, ADJ, DET],
PREP: [LEX],
ADJ: [LEX],
DET: [LEX],
ADVERB: [LEX],
LEX: [],
}
RUSSIAN_READOUT_RULES = {
VERB: [LEX, NOM, ACC, DAT],
NOM: [LEX],
ACC: [LEX],
DAT: [LEX],
LEX: [],
}
class ParserBrain(brain.Brain):
def __init__(self, p, lexeme_dict={}, all_areas=[], recurrent_areas=[], initial_areas=[], readout_rules={}):
brain.Brain.__init__(self, p)
self.lexeme_dict = lexeme_dict
self.all_areas = all_areas
self.recurrent_areas = recurrent_areas
self.initial_areas = initial_areas
self.fiber_states = defaultdict()
self.area_states = defaultdict(set)
self.activated_fibers = defaultdict(set)
self.readout_rules = readout_rules
self.initialize_states()
def initialize_states(self):
for from_area in self.all_areas:
self.fiber_states[from_area] = defaultdict(set)
for to_area in self.all_areas:
self.fiber_states[from_area][to_area].add(0)
for area in self.all_areas:
self.area_states[area].add(0)
for area in self.initial_areas:
self.area_states[area].discard(0)
def applyFiberRule(self, rule):
if rule.action == INHIBIT:
self.fiber_states[rule.area1][rule.area2].add(rule.index)
self.fiber_states[rule.area2][rule.area1].add(rule.index)
elif rule.action == DISINHIBIT:
self.fiber_states[rule.area1][rule.area2].discard(rule.index)
self.fiber_states[rule.area2][rule.area1].discard(rule.index)
def applyAreaRule(self, rule):
if rule.action == INHIBIT:
self.area_states[rule.area].add(rule.index)
elif rule.action == DISINHIBIT:
self.area_states[rule.area].discard(rule.index)
def applyRule(self, rule):
if isinstance(rule, FiberRule):
self.applyFiberRule(rule)
return True
if isinstance(rule, AreaRule):
self.applyAreaRule(rule)
return True
return False
def parse_project(self):
project_map = self.getProjectMap()
self.remember_fibers(project_map)
self.project({}, project_map)
# For fiber-activation readout, remember all fibers that were ever fired.
def remember_fibers(self, project_map):
for from_area, to_areas in project_map.items():
self.activated_fibers[from_area].update(to_areas)
def recurrent(self, area):
return (area in self.recurrent_areas)
# TODO: Remove brain from ProjectMap somehow
# perhaps replace Parser state with ParserBrain:Brain, better design
def getProjectMap(self):
proj_map = defaultdict(set)
for area1 in self.all_areas:
if len(self.area_states[area1]) == 0:
for area2 in self.all_areas:
if area1 == LEX and area2 == LEX:
continue
if len(self.area_states[area2]) == 0:
if len(self.fiber_states[area1][area2]) == 0:
if self.area_by_name[area1].winners:
proj_map[area1].add(area2)
if self.area_by_name[area2].winners:
proj_map[area2].add(area2)
return proj_map
def activateWord(self, area_name, word):
area = self.area_by_name[area_name]
k = area.k
assembly_start = self.lexeme_dict[word]["index"]*k
area.winners = list(range(assembly_start, assembly_start+k))
area.fix_assembly()
def activateIndex(self, area_name, index):
area = self.area_by_name[area_name]
k = area.k
assembly_start = index*k
area.winners = list(range(assembly_start, assembly_start+k))
area.fix_assembly()
def interpretAssemblyAsString(self, area_name):
return self.getWord(area_name, 0.7)
def getWord(self, area_name, min_overlap=0.7):
if not self.area_by_name[area_name].winners:
raise Exception("Cannot get word because no assembly in " + area_name)
winners = set(self.area_by_name[area_name].winners)
area_k = self.area_by_name[area_name].k
threshold = min_overlap * area_k
for word, lexeme in self.lexeme_dict.items():
word_index = lexeme["index"]
word_assembly_start = word_index * area_k
word_assembly = set(range(word_assembly_start, word_assembly_start + area_k))
if len((winners & word_assembly)) >= threshold:
return word
return None
def getActivatedFibers(self):
# Prune activated_fibers pased on the readout_rules
pruned_activated_fibers = defaultdict(set)
for from_area, to_areas in self.activated_fibers.items():
for to_area in to_areas:
if to_area in self.readout_rules[from_area]:
pruned_activated_fibers[from_area].add(to_area)
return pruned_activated_fibers
class RussianParserBrain(ParserBrain):
def __init__(self, p, non_LEX_n=10000, non_LEX_k=100, LEX_k=10,
default_beta=0.2, LEX_beta=1.0, recurrent_beta=0.05, interarea_beta=0.5, verbose=False):
recurrent_areas = [NOM, VERB, ACC, DAT]
ParserBrain.__init__(self, p,
lexeme_dict=RUSSIAN_LEXEME_DICT,
all_areas=RUSSIAN_AREAS,
recurrent_areas=recurrent_areas,
initial_areas=[LEX],
readout_rules=RUSSIAN_READOUT_RULES)
self.verbose = verbose
LEX_n = RUSSIAN_LEX_SIZE * LEX_k
self.add_explicit_area(LEX, LEX_n, LEX_k, default_beta)
self.add_area(NOM, non_LEX_n, non_LEX_k, default_beta)
self.add_area(ACC, non_LEX_n, non_LEX_k, default_beta)
self.add_area(VERB, non_LEX_n, non_LEX_k, default_beta)
self.add_area(DAT, non_LEX_n, non_LEX_k, default_beta)
# LEX: all areas -> * strong, * -> * can be strong
# non LEX: other areas -> * (?), LEX -> * strong, * -> * weak
# DET? Should it be different?
custom_plasticities = defaultdict(list)
for area in recurrent_areas:
custom_plasticities[LEX].append((area, LEX_beta))
custom_plasticities[area].append((LEX, LEX_beta))
custom_plasticities[area].append((area, recurrent_beta))
for other_area in recurrent_areas:
if other_area == area:
continue
custom_plasticities[area].append((other_area, interarea_beta))
self.update_plasticities(area_update_map=custom_plasticities)
class EnglishParserBrain(ParserBrain):
def __init__(self, p, non_LEX_n=10000, non_LEX_k=100, LEX_k=20,
default_beta=0.2, LEX_beta=1.0, recurrent_beta=0.05, interarea_beta=0.5, verbose=False):
ParserBrain.__init__(self, p,
lexeme_dict=LEXEME_DICT,
all_areas=AREAS,
recurrent_areas=RECURRENT_AREAS,
initial_areas=[LEX, SUBJ, VERB],
readout_rules=ENGLISH_READOUT_RULES)
self.verbose = verbose
LEX_n = LEX_SIZE * LEX_k
self.add_explicit_area(LEX, LEX_n, LEX_k, default_beta)
DET_k = LEX_k
self.add_area(SUBJ, non_LEX_n, non_LEX_k, default_beta)
self.add_area(OBJ, non_LEX_n, non_LEX_k, default_beta)
self.add_area(VERB, non_LEX_n, non_LEX_k, default_beta)
self.add_area(ADJ, non_LEX_n, non_LEX_k, default_beta)
self.add_area(PREP, non_LEX_n, non_LEX_k, default_beta)
self.add_area(PREP_P, non_LEX_n, non_LEX_k, default_beta)
self.add_area(DET, non_LEX_n, DET_k, default_beta)
self.add_area(ADVERB, non_LEX_n, non_LEX_k, default_beta)
# LEX: all areas -> * strong, * -> * can be strong
# non LEX: other areas -> * (?), LEX -> * strong, * -> * weak
# DET? Should it be different?
custom_plasticities = defaultdict(list)
for area in RECURRENT_AREAS:
custom_plasticities[LEX].append((area, LEX_beta))
custom_plasticities[area].append((LEX, LEX_beta))
custom_plasticities[area].append((area, recurrent_beta))
for other_area in RECURRENT_AREAS:
if other_area == area:
continue
custom_plasticities[area].append((other_area, interarea_beta))
self.update_plasticities(area_update_map=custom_plasticities)
def getProjectMap(self):
proj_map = ParserBrain.getProjectMap(self)
# "War of fibers"
if LEX in proj_map and len(proj_map[LEX]) > 2: # because LEX->LEX
raise Exception("Got that LEX projecting into many areas: " + str(proj_map[LEX]))
return proj_map
def getWord(self, area_name, min_overlap=0.7):
word = ParserBrain.getWord(self, area_name, min_overlap)
if word:
return word
if not word and area_name == DET:
winners = set(self.area_by_name[area_name].winners)
area_k = self.area_by_name[area_name].k
threshold = min_overlap * area_k
nodet_index = DET_SIZE - 1
nodet_assembly_start = nodet_index * area_k
nodet_assembly = set(range(nodet_assembly_start, nodet_assembly_start + area_k))
if len((winners & nodet_assembly)) > threshold:
return "<null-det>"
# If nothing matched, at least we can see that in the parse output.
return "<NON-WORD>"
class ParserDebugger():
def __init__(self, brain, all_areas, explicit_areas):
self.b = brain
self.all_areas = all_areas
self.explicit_areas = explicit_areas
def run(self):
command = input("DEBUGGER: ENTER to continue, 'P' for PEAK \n")
while command:
if command == "P":
self.peak()
return
elif command:
print("DEBUGGER: Command not recognized...")
command = input("DEBUGGER: ENTER to continue, 'P' for PEAK \n")
else:
return
def peak(self):
remove_map = defaultdict(int)
# Temporarily set beta to 0
self.b.disable_plasticity = True
self.b.save_winners = True
for area in self.all_areas:
self.b.area_by_name[area].unfix_assembly()
while True:
test_proj_map_string = input("DEBUGGER: enter projection map, eg. {\"VERB\": [\"LEX\"]}, or ENTER to quit\n")
if not test_proj_map_string:
break
test_proj_map = json.loads(test_proj_map_string)
# Important: save winners to later "remove" this test project round
to_area_set = set()
for _, to_area_list in test_proj_map.items():
for to_area in to_area_list:
to_area_set.add(to_area)
if not self.b.area_by_name[to_area].saved_winners:
self.b.area_by_name[to_area].saved_winners.append(self.b.area_by_name[to_area].winners)
for to_area in to_area_set:
remove_map[to_area] += 1
self.b.project({}, test_proj_map)
for area in self.explicit_areas:
if area in to_area_set:
area_word = self.b.interpretAssemblyAsString(area)
print("DEBUGGER: in explicit area " + area + ", got: " + area_word)
print_assemblies = input("DEBUGGER: print assemblies in areas? Eg. 'LEX,VERB' or ENTER to cont\n")
if not print_assemblies:
continue
for print_area in print_assemblies.split(","):
print("DEBUGGER: Printing assembly in area " + print_area)
print(str(self.b.area_by_name[print_area].winners))
if print_area in self.explicit_areas:
word = self.b.interpretAssemblyAsString(print_area)
print("DEBUGGER: in explicit area got assembly = " + word)
# Restore assemblies (winners) and w values to before test projections
for area, num_test_projects in remove_map.items():
self.b.area_by_name[area].winners = self.b.area_by_name[area].saved_winners[0]
self.b.area_by_name[area].w = self.b.area_by_name[area].saved_w[-num_test_projects - 1]
self.b.area_by_name[area].saved_w = self.b.area_by_name[area].saved_w[:(-num_test_projects)]
self.b.disable_plasticity = False
self.b.save_winners = False
for area in self.all_areas:
self.b.area_by_name[area].saved_winners = []
# strengthen the assembly representing this word in LEX
# possibly useful way to simulate long-term potentiated word assemblies
# so that they are easily completed.
def potentiate_word_in_LEX(b, word, rounds=20):
b.activateWord(LEX, word)
for _ in range(20):
b.project({}, {LEX: [LEX]})
# "dogs chase cats" experiment, what should happen?
# simplifying assumption 1: after every project round, freeze assemblies
# exp version 1: area not fired into until LEX fires into it
# exp version 2: project between all disinhibited fibers/areas, forming some "ghosts"
# "dogs": open fibers LEX<->SUBJ and LEX<->OBJ but only SUBJ disinhibited
# results in "dogs" assembly in LEX<->SUBJ (reciprocal until stable, LEX frozen)
# in version 2 would also have SUBJ<->VERB, so LEX<->SUBJ<->VERB overall
# "chase": opens fibers LEX<->VERB and VERB<->OBJ, inhibit SUBJ, disi
# results in "chase" assembly in LEX<->VERB
# in version 2 would also havee VERB<->OBJ
# "cats":
# Readout types
class ReadoutMethod(Enum):
FIXED_MAP_READOUT = 1
FIBER_READOUT = 2
NATURAL_READOUT = 3
def parse(sentence="cats chase mice", language="English", p=0.1, LEX_k=20,
project_rounds=20, verbose=True, debug=False, readout_method=ReadoutMethod.FIBER_READOUT):
if language == "English":
b = EnglishParserBrain(p, LEX_k=LEX_k, verbose=verbose)
lexeme_dict = LEXEME_DICT
all_areas = AREAS
explicit_areas = EXPLICIT_AREAS
readout_rules = ENGLISH_READOUT_RULES
if language == "Russian":
b = RussianParserBrain(p, LEX_k=LEX_k, verbose=verbose)
lexeme_dict = RUSSIAN_LEXEME_DICT
all_areas = RUSSIAN_AREAS
explicit_areas = RUSSIAN_EXPLICIT_AREAS
readout_rules = RUSSIAN_READOUT_RULES
parseHelper(b, sentence, p, LEX_k, project_rounds, verbose, debug,
lexeme_dict, all_areas, explicit_areas, readout_method, readout_rules)
def parseHelper(b, sentence, p, LEX_k, project_rounds, verbose, debug,
lexeme_dict, all_areas, explicit_areas, readout_method, readout_rules):
debugger = ParserDebugger(b, all_areas, explicit_areas)
sentence = sentence.split(" ")
extreme_debug = False
for word in sentence:
lexeme = lexeme_dict[word]
b.activateWord(LEX, word)
if verbose:
print("Activated word: " + word)
print(b.area_by_name[LEX].winners)
for rule in lexeme["PRE_RULES"]:
b.applyRule(rule)
proj_map = b.getProjectMap()
for area in proj_map:
if area not in proj_map[LEX]:
b.area_by_name[area].fix_assembly()
if verbose:
print("FIXED assembly bc not LEX->this area in: " + area)
elif area != LEX:
b.area_by_name[area].unfix_assembly()
b.area_by_name[area].winners = []
if verbose:
print("ERASED assembly because LEX->this area in " + area)
proj_map = b.getProjectMap()
if verbose:
print("Got proj_map = ")
print(proj_map)
for i in range(project_rounds):
b.parse_project()
if verbose:
proj_map = b.getProjectMap()
print("Got proj_map = ")
print(proj_map)
if extreme_debug and word == "a":
print("Starting debugger after round " + str(i) + "for word" + word)
debugger.run()
#if verbose:
# print("Done projecting for this round")
# for area_name in all_areas:
# print("Post proj stats for " + area_name)
# print("w=" + str(b.area_by_name[area_name].w))
# print("num_first_winners=" + str(b.area_by_name[area_name].num_first_winners))
for rule in lexeme["POST_RULES"]:
b.applyRule(rule)
if debug:
print("Starting debugger after the word " + word)
debugger.run()
# Readout
# For all readout methods, unfix assemblies and remove plasticity.
b.disable_plasticity = True
for area in all_areas:
b.area_by_name[area].unfix_assembly()
dependencies = []
def read_out(area, mapping):
to_areas = mapping[area]
b.project({}, {area: to_areas})
this_word = b.getWord(LEX)
for to_area in to_areas:
if to_area == LEX:
continue
b.project({}, {to_area: [LEX]})
other_word = b.getWord(LEX)
dependencies.append([this_word, other_word, to_area])
for to_area in to_areas:
if to_area != LEX:
read_out(to_area, mapping)
def treeify(parsed_dict, parent):
for key, values in parsed_dict.items():
key_node = pptree.Node(key, parent)
if isinstance(values, str):
_ = pptree.Node(values, key_node)
else:
treeify(values, key_node)
if readout_method == ReadoutMethod.FIXED_MAP_READOUT:
# Try "reading out" the parse.
# To do so, start with final assembly in VERB
# project VERB->SUBJ,OBJ,LEX
parsed = {VERB: read_out(VERB, readout_rules)}
print("Final parse dict: ")
print(parsed)
root = pptree.Node(VERB)
treeify(parsed[VERB], root)
if readout_method == ReadoutMethod.FIBER_READOUT:
activated_fibers = b.getActivatedFibers()
if verbose:
print("Got activated fibers for readout:")
print(activated_fibers)
read_out(VERB, activated_fibers)
print("Got dependencies: ")
print(dependencies)
# root = pptree.Node(VERB)
#treeify(parsed[VERB], root)
# pptree.print_tree(root)
def main():
parse()
if __name__ == "__main__":
main()
# TODOs
# BRAIN
# fix brain.py to work when no-assembly areas are projected in
# PARSER IMPLEMENTATION
# Factor out debugger of parse
# Factor out read-out, possibly other aspects of parse
# consider areas where only A->B needed not A<->B, easy to fix
# for example, SUBJ/OBJ->DET, etc?
# PARSER CONCEPTUAL
# 1) NATURAL READ OUT:
# "Fiber-activation read out": Remember fibers that were activated
# "Lexical-item read out": Get word from V, see rules (not sufficient but recovers basic structure)
# 2) PREP area: of, others
# "brand of toys", to merge brand<->of<->toys, look for activated noun areas
# for example if OBJ is the only one, we're done
# if multiple, recency? (first instance of lookahead/memory!)
# 3) Intransitive verbs (in particular wrt read out)
# RESEARCH IDEAS
# 1) Russian experiment (free word order)
# 2) Grammaticality, detect some sort of error for non-grammatical