-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathutils.py
308 lines (245 loc) · 9.96 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
from email.mime.text import MIMEText
import random
import requests
import smtplib
import subprocess
import time
import threading
from convert import pubtator2pubannotation
def query_raw(text, url='https://bern.korea.ac.kr/plain'):
return requests.post(url, data={'sample_text': text}).json()
def query(pmid, url='https://bern.korea.ac.kr/pubmed', output_format='json',
verbose=False):
res = None
if type(pmid) is str or type(pmid) is int:
res = requests.get('{}/{}/{}'.format(url, pmid, output_format))
elif type(pmid) is list:
if len(pmid) == 0:
print('No pmid')
return res
pmid = [str(p) for p in pmid if type(p) is not str]
res = requests.get('{}/{}/{}'.format(url, ','.join(pmid),
output_format))
if verbose:
print('pmid', pmid, 'result', res.text)
if output_format == 'pubtator':
return res.text
return res.json()
def test_bern_get(num_thread, period_delay_seconds, tries,
url='https://bern.korea.ac.kr/pubmed'):
for _ in range(tries):
pmids = random.sample(range(0, 30400000), num_thread)
print(url, pmids)
threads = list()
for pmid in pmids:
t = threading.Thread(target=query,
args=(pmid, url, 'json', True))
t.daemon = True
t.start()
threads.append(t)
# block until all tasks are done
for t in threads:
t.join()
time.sleep(period_delay_seconds)
def test_bern_post(base_text, num_thread, period_delay_seconds, tries,
url='https://bern.korea.ac.kr/plain'):
for _ in range(tries):
random_numbers = random.sample(range(0, 99999999), num_thread)
print(url, random_numbers)
threads = list()
for random_number in random_numbers:
t = threading.Thread(target=query_raw,
args=('{} {}'.format(base_text, random_number),
url))
t.daemon = True
t.start()
threads.append(t)
# block until all tasks are done
for t in threads:
t.join()
time.sleep(period_delay_seconds)
# Ref.
# https://www.endpoint.com/blog/2015/01/28/getting-realtime-output-using-python
def run_command(command, cwd):
process = subprocess.Popen(command, stdout=subprocess.PIPE, cwd=cwd)
while True:
output = process.stdout.readline().decode('utf-8')
if output == '' and process.poll() is not None:
break
if output:
print(output.strip())
rc = process.poll()
return rc
def ps_grep(q):
ps_process = subprocess.Popen(["ps", "aux"], stdout=subprocess.PIPE)
grep_process = subprocess.Popen(["egrep", q], stdin=ps_process.stdout,
stdout=subprocess.PIPE)
ps_process.stdout.close()
output = grep_process.communicate()[0]
return output.decode('utf-8')
def get_bern_status(ps_grep_res):
status = 0
off_list = list()
# mutation taggers
mutation_taggers = ['tmVar2Server.jar', 'GNormPlusServer.jar']
for mt in mutation_taggers:
if mt in ps_grep_res:
status += 1
else:
off_list.append(mt)
# normalizers
normalizers = ['GNormPlus_180921.jar',
'disease_normalizer_181030.jar', 'chemical_normalizer.py',
'mutation_normalizer.py', 'species_normalizer.py']
for norm in normalizers:
if norm in ps_grep_res:
status += 1
else:
off_list.append(norm)
# back-end and front-end
be_fe = ['python3 -u server.py', 'node bern_server.js']
for bf in be_fe:
if bf in ps_grep_res:
status += 1
else:
off_list.append(bf)
return status, off_list
def send_mail(from_addr, to, subject, content, gmail_id, password):
msg = MIMEText(content)
msg['Subject'] = subject
msg['From'] = from_addr
msg['To'] = to
# Send the message via our own SMTP server.
s = smtplib.SMTP('smtp.gmail.com', 587)
s.ehlo()
s.starttls()
s.ehlo()
s.login(gmail_id, password)
s.send_message(msg)
print('Mail has been sent')
s.quit()
def is_good(num_type_set=3, normal_id_cnt=13):
try:
# A part of PMID:29446767
post_res = query_raw('{} {}'.format(
'CLAPO syndrome: identification of somatic activating PIK3CA '
'mutations '
'and delineation of the natural history and phenotype. Purpose '
'CLAPO '
'syndrome is a rare vascular disorder characterized by capillary '
'malformation of the lower lip, lymphatic malformation predominant '
'on the face and neck, asymmetry, and partial/generalized '
'overgrowth. '
'Here we tested the hypothesis that, although the genetic cause is '
'not known, the tissue distribution of the clinical manifestations '
'in CLAPO seems to follow a pattern of somatic mosaicism.'
' Methods We '
'clinically evaluated a cohort of 13 patients with CLAPO and '
'screened '
'20 DNA blood/tissue samples from 9 patients using '
'high-throughput, '
'deep sequencing. Results We identified five activating mutations '
'in the PIK3CA gene in affected tissues from 6 of the 9 patients '
'studied; one of the variants (NM_006218.2:c.248T>C; p.Phe83Ser) '
'has not been previously described in developmental disorders. '
'Conclusion We describe for the first time the presence of somatic '
'activating PIK3CA mutations in patients with CLAPO. We also '
'report '
'an update of the phenotype and natural history of the syndrome. '
'Imatinib is a asdf of homo sapiens ...', 2019.8))
except requests.exceptions.ConnectionError:
return 'ConnectionError'
if 'denotations' not in post_res:
print('No denotations')
return 'No denotations'
# all entity types
id_cnt = 0
type_set = set()
for d in post_res['denotations']:
type_set.add(d['obj'])
if 'CUI-less' == d['id'][0]:
continue
id_cnt += 1
if len(type_set) != num_type_set:
print('Found an NER problem:', num_type_set, '!=', len(type_set))
return 'NER problem #types: {} != {}'.format(num_type_set,
len(type_set))
if id_cnt != normal_id_cnt:
print('Found a normalization problem:', normal_id_cnt, '!=', id_cnt)
return 'Normalization problem #norm. ids: {} != {}'.format(
normal_id_cnt, id_cnt)
return 'success'
def is_get_good(pmid, output_format, num_type_set, normal_id_cnt):
get_res = query(pmid, url='https://bern.korea.ac.kr/pubmed',
output_format=output_format, verbose=False)
if output_format.lower() == 'pubtator':
get_res = pubtator2pubannotation(get_res)
if type(get_res) is str:
return get_res
# get_res should be a list
if type(get_res) is not list:
return 'no list: {}'.format(type(get_res))
if not get_res:
return 'no result'
if 'error: tmtool:' in get_res[0]['text']:
return 'tmtool error'
id_cnt = 0
type_set = set()
for gr in get_res:
if 'denotations' not in gr:
if 'sourceid' in gr:
print('No denotations, sourceid:', gr['sourceid'])
else:
print('No denotations, gr:', gr)
return 'pmid: {}, No denotations {}'.format(pmid, gr)
for d in gr['denotations']:
type_set.add(d['obj'])
if 'CUI-less' == d['id'][0]:
continue
id_cnt += 1
# print(gr['sourceid'], '#types', len(type_set))
# print(gr['sourceid'], '#ids', id_cnt)
if len(type_set) != num_type_set:
print('Found an NER problem #types: {} != {}'.format(
num_type_set, len(type_set)))
return 'pmid: {}, {}, NER problem, #types: {} != {}'.format(
pmid, output_format.lower(), num_type_set, len(type_set))
if id_cnt != normal_id_cnt:
print('Found a normalization problem: got', id_cnt,
'expected', normal_id_cnt)
return 'pmid: {}, {}, normalizer problem, got {} expected {}'.format(
pmid, output_format.lower(), id_cnt, normal_id_cnt)
return 'success'
# Ref. dict of SR4GN
species_human_excl_homo_sapiens = \
'person|infant|Child|people|participants|woman|' \
'Girls|Man|Peoples|Men|Participant|Patients|' \
'humans|Persons|mans|participant|Infants|Boys|' \
'Human|Humans|Women|children|Mans|child|Participants|Girl|' \
'Infant|girl|patient|patients|boys|men|infants|' \
'man|girls|Children|Boy|women|persons|human|Woman|' \
'peoples|Patient|People|boy|Person'.split('|')
def filter_entities(ner_results, is_raw_text):
num_filtered_species_per_doc = list()
for idx, paper in enumerate(ner_results):
if is_raw_text:
content = paper['abstract']
else:
if len(paper['abstract']) > 0:
content = paper['title'] + ' ' + paper['abstract']
else:
content = paper['title']
valid_species = list()
species = paper['entities']['species']
for spcs in species:
entity_mention = content[spcs['start']:spcs['end']+1]
if entity_mention in species_human_excl_homo_sapiens:
spcs['end'] += 1
continue
valid_species.append(spcs)
num_filtered_species = len(species) - len(valid_species)
if num_filtered_species > 0:
paper['entities']['species'] = valid_species
num_filtered_species_per_doc.append((paper['pmid'],
num_filtered_species))
return num_filtered_species_per_doc