diff --git a/01_CARE/care_exercise.ipynb b/01_CARE/care_exercise.ipynb
index b50bf3e..0e72ebc 100644
--- a/01_CARE/care_exercise.ipynb
+++ b/01_CARE/care_exercise.ipynb
@@ -58,7 +58,6 @@
"%load_ext tensorboard\n",
"\n",
"\n",
- "from careamics_portfolio import PortfolioManager\n",
"import tifffile\n",
"import numpy as np\n",
"from pathlib import Path\n",
@@ -93,31 +92,6 @@
"Since the image pairs were synthetically created in this example, they are already aligned perfectly. Note that when working with real paired acquisitions, the low and high SNR images are not pixel-perfect aligned so they would often need to be co-registered before training a CARE model."
]
},
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Download the data\n",
- "\n",
- "To download the data, we use the careamics-portfolio package. The package provides a collection of microscopy datasets and convenience functions for downloading them."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Download the data\n",
- "portfolio = PortfolioManager()\n",
- "print(portfolio.denoising)\n",
- "\n",
- "root_path = Path(\"./data\")\n",
- "files = portfolio.denoising.CARE_U2OS.download(root_path)\n",
- "print(f\"Number of files downloaded: {len(files)}\")"
- ]
- },
{
"attachments": {},
"cell_type": "markdown",
@@ -133,6 +107,7 @@
"outputs": [],
"source": [
"# Define the paths\n",
+ "root_path = Path(\"./../data\")\n",
"root_path = root_path / \"denoising-CARE_U2OS.unzip\" / \"data\" / \"U2OS\"\n",
"assert root_path.exists(), f\"Path {root_path} does not exist\"\n",
"\n",
@@ -455,9 +430,26 @@
"metadata": {},
"source": [
"
Checkpoint 1: Data
\n",
+ "\n",
+ "In this section, we prepared paired training data. \n",
+ "The steps were:\n",
+ "1) Loading the images.\n",
+ "2) Cropping them into patches.\n",
+ "3) Checking the patches visually.\n",
+ "4) Creating an instance of a pytorch dataset and dataloader.\n",
+ "\n",
+ "You'll see a similar preparation procedure followed for most deep learning vision tasks.\n",
+ "\n",
+ "Next, we'll use this data to train a denoising model.\n",
"\n",
"\n",
- "
\n",
+ "
\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
"\n",
"## Part 2: Training the model\n",
"\n",
@@ -682,9 +674,25 @@
"metadata": {},
"source": [
"Checkpoint 2: Training
\n",
+ "\n",
+ "In this section, we created and trained a UNet for denoising.\n",
+ "We:\n",
+ "1) Instantiated the model with random weights.\n",
+ "2) Chose a loss function to compare the output image to the ground truth clean image.\n",
+ "3) Chose an optimizer to minimize that loss function.\n",
+ "4) Trained the model with this optimizer.\n",
+ "5) Examined the training and validation loss curves to see how well our model trained.\n",
+ "\n",
+ "Next, we'll load a test set of noisy images and see how well our model denoises them.\n",
"\n",
"\n",
- "
\n",
+ "
\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
"\n",
"## Part 3: Predicting on the test dataset\n"
]
@@ -801,8 +809,21 @@
"metadata": {},
"source": [
"Checkpoint 3: Predicting
\n",
+ "\n",
+ "In this section, we evaluated the performance of our denoiser.\n",
+ "We:\n",
+ "1) Created a CAREDataset and Dataloader for a prediction loop.\n",
+ "2) Ran a prediction loop on the test data.\n",
+ "3) Examined the outputs.\n",
+ "\n",
+ "This notebook has shown how matched pairs of noisy and clean images can train a UNet to denoise, but what if we don't have any clean images? In the next notebook, we'll try Noise2Void, a method for training a UNet to denoise with only noisy images.\n",
""
]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": []
}
],
"metadata": {
diff --git a/02_Noise2Void/n2v_exercise.ipynb b/02_Noise2Void/n2v_exercise.ipynb
index 1c26cfe..4374500 100644
--- a/02_Noise2Void/n2v_exercise.ipynb
+++ b/02_Noise2Void/n2v_exercise.ipynb
@@ -127,7 +127,6 @@
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import tifffile\n",
- "from careamics_portfolio import PortfolioManager\n",
"\n",
"from careamics import CAREamist\n",
"from careamics.config import (\n",
@@ -265,35 +264,19 @@
"use a scanning electron microscopy image (SEM)."
]
},
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "For this we first download the relevant dataset from the CAREamics portfolio library"
- ]
- },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
- "# Explore portfolio\n",
- "portfolio = PortfolioManager()\n",
- "print(portfolio.denoising)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Download files # TODO File should be reused from previous exercise\n",
- "root_path = Path(\"./data\")\n",
- "files = portfolio.denoising.N2V_SEM.download(root_path)\n",
- "print(f\"List of downloaded files: {files}\")"
+ "# Define the paths\n",
+ "root_path = Path(\"./../data\")\n",
+ "root_path = root_path / \"denoising-N2V_SEM.unzip\"\n",
+ "assert root_path.exists(), f\"Path {root_path} does not exist\"\n",
+ "\n",
+ "train_images_path = root_path / \"train.tif\"\n",
+ "validation_images_path = root_path / \"validation.tif\""
]
},
{
@@ -317,7 +300,7 @@
"outputs": [],
"source": [
"# Load images\n",
- "train_image = tifffile.imread(files[0])\n",
+ "train_image = tifffile.imread(train_images_path)\n",
"print(f\"Train image shape: {train_image.shape}\")\n",
"plt.imshow(train_image, cmap=\"gray\")"
]
@@ -342,36 +325,11 @@
},
"outputs": [],
"source": [
- "val_image = tifffile.imread(files[1])\n",
+ "val_image = tifffile.imread(validation_images_path)\n",
"print(f\"Validation image shape: {val_image.shape}\")\n",
"plt.imshow(val_image, cmap=\"gray\")"
]
},
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "editable": true,
- "slideshow": {
- "slide_type": ""
- },
- "tags": []
- },
- "outputs": [],
- "source": [
- "# Set paths\n",
- "\n",
- "data_path = Path(root_path / \"n2v_sem\")\n",
- "train_path = data_path / \"train\"\n",
- "val_path = data_path / \"val\"\n",
- "\n",
- "train_path.mkdir(parents=True, exist_ok=True)\n",
- "val_path.mkdir(parents=True, exist_ok=True)\n",
- "\n",
- "shutil.copy(root_path / files[0], train_path / \"train_image.tif\")\n",
- "shutil.copy(root_path / files[1], val_path / \"val_image.tif\")"
- ]
- },
{
"attachments": {},
"cell_type": "markdown",
@@ -473,7 +431,7 @@
"metadata": {},
"outputs": [],
"source": [
- "careamist.train(train_source=train_path, val_source=val_path)"
+ "careamist.train(train_source=train_images_path, val_source=validation_images_path)"
]
},
{
@@ -534,7 +492,7 @@
},
"outputs": [],
"source": [
- "preds = careamist.predict(source=train_path, tile_size=(256, 256))[0]"
+ "preds = careamist.predict(source=train_images_path, tile_size=(256, 256))[0]"
]
},
{
@@ -666,7 +624,7 @@
"other_careamist = CAREamist(source=\"checkpoints/last.ckpt\")\n",
"\n",
"# And predict\n",
- "new_preds = other_careamist.predict(source=train_path, tile_size=(256, 256))[0]\n",
+ "new_preds = other_careamist.predict(source=train_images_path, tile_size=(256, 256))[0]\n",
"\n",
"# Show the full image\n",
"fig, ax = plt.subplots(1, 2, figsize=(10, 5))\n",
@@ -738,15 +696,7 @@
},
"outputs": [],
"source": [
- "import os\n",
- "import urllib\n",
- "# Download the data\n",
- "root_dir = \"./data\"\n",
- "if not os.path.exists(root_dir):\n",
- " os.mkdir(root_dir)\n",
- "mito_path = \"./data/mito-confocal-lowsnr.tif\"\n",
- "if not os.path.exists(mito_path):\n",
- " urllib.request.urlretrieve(\"https://s3.ap-northeast-1.wasabisys.com/gigadb-datasets/live/pub/10.5524/100001_101000/100888/03-mito-confocal/mito-confocal-lowsnr.tif\", mito_path)\n",
+ "mito_path = \"./../data/mito-confocal-lowsnr.tif\"\n",
"mito_image = tifffile.imread(mito_path)"
]
},
diff --git a/03_COSDD/bonus-exercise.ipynb b/03_COSDD/bonus-exercise.ipynb
index 7417af2..7c1012e 100644
--- a/03_COSDD/bonus-exercise.ipynb
+++ b/03_COSDD/bonus-exercise.ipynb
@@ -43,7 +43,7 @@
"metadata": {},
"outputs": [],
"source": [
- "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")"
+ "assert torch.cuda.is_available()"
]
},
{
@@ -90,7 +90,7 @@
"outputs": [],
"source": [
"# load the data\n",
- "lowsnr_path = \"./data/mito-confocal-lowsnr.tif\"\n",
+ "lowsnr_path = \"./../data/mito-confocal-lowsnr.tif\"\n",
"low_snr = tifffile.imread(lowsnr_path)\n",
"low_snr = low_snr[:, np.newaxis]\n",
"low_snr = torch.from_numpy(low_snr)\n",
@@ -121,7 +121,7 @@
"metadata": {},
"outputs": [],
"source": [
- "inp_image = low_snr[:1, :, :512, :512].to(device)\n",
+ "inp_image = low_snr[:1, :, :512, :512].cuda()\n",
"reconstructions = hub.reconstruct(inp_image)\n",
"denoised = reconstructions[\"s_hat\"].cpu()\n",
"noisy = reconstructions[\"x_hat\"].cpu()"
diff --git a/03_COSDD/exercise.ipynb b/03_COSDD/exercise.ipynb
index 735f35a..e343d08 100644
--- a/03_COSDD/exercise.ipynb
+++ b/03_COSDD/exercise.ipynb
@@ -86,7 +86,7 @@
"\n",
"### Task 1.1.\n",
"\n",
- "In the next cell, the low signal-to-noise ratio data that we will be using in this exercise will be downloaded and storedis stored as a tiff file at `./data/mito-confocal-lowsnr.tif`. \n",
+ "The low signal-to-noise ratio data that we will be using in this exercise has been downloaded and stored as a tiff file at `./../data/mito-confocal-lowsnr.tif`. \n",
"\n",
"In the following cell, you'll load it and get it into a format suitable for training the denoiser.\n",
"\n",
@@ -97,20 +97,6 @@
""
]
},
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "root_dir = \"./data\"\n",
- "if not os.path.exists(root_dir):\n",
- " os.mkdir(root_dir)\n",
- "lowsnr_path = \"./data/mito-confocal-lowsnr.tif\"\n",
- "if not os.path.exists(lowsnr_path):\n",
- " urllib.request.urlretrieve(\"https://s3.ap-northeast-1.wasabisys.com/gigadb-datasets/live/pub/10.5524/100001_101000/100888/03-mito-confocal/mito-confocal-lowsnr.tif\", lowsnr_path)"
- ]
- },
{
"cell_type": "code",
"execution_count": null,
@@ -637,7 +623,7 @@
"metadata": {},
"outputs": [],
"source": [
- "lowsnr_path = \"./data/mito-confocal-lowsnr.tif\"\n",
+ "lowsnr_path = \"./../data/mito-confocal-lowsnr.tif\"\n",
"n_test_images = 10\n",
"# load the data\n",
"test_set = tifffile.imread(lowsnr_path)\n",
diff --git a/04_DenoiSplit/exercise.ipynb b/04_DenoiSplit/exercise.ipynb
index 6a8fda9..23338e2 100644
--- a/04_DenoiSplit/exercise.ipynb
+++ b/04_DenoiSplit/exercise.ipynb
@@ -72,23 +72,11 @@
"source": [
"import os\n",
"\n",
- "data_dir = \"./data\" # FILL IN THE PATH TO THE DATA DIRECTORY\n",
"work_dir = \".\"\n",
"tensorboard_log_dir = os.path.join(work_dir, \"tensorboard_logs\")\n",
"os.makedirs(tensorboard_log_dir, exist_ok=True)"
]
},
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "e8d283b2",
- "metadata": {},
- "outputs": [],
- "source": [
- "# TODO set correctly for students\n",
- "datapath = \"/home/igor.zubarev/data/biosr\""
- ]
- },
{
"cell_type": "code",
"execution_count": null,
@@ -191,6 +179,8 @@
},
"outputs": [],
"source": [
+ "datapath = \"./../data/\"\n",
+ "\n",
"# load the default config.\n",
"config = get_config()\n",
"\n",
@@ -828,7 +818,7 @@
},
{
"cell_type": "markdown",
- "id": "17fd0444",
+ "id": "d3c449f5",
"metadata": {},
"source": [
"
End of the exercise
\n",
diff --git a/05_bonus_Noise2Noise/n2n_exercise.ipynb b/05_bonus_Noise2Noise/n2n_exercise.ipynb
index 561258f..c66e33d 100644
--- a/05_bonus_Noise2Noise/n2n_exercise.ipynb
+++ b/05_bonus_Noise2Noise/n2n_exercise.ipynb
@@ -61,7 +61,6 @@
"\n",
"import matplotlib.pyplot as plt\n",
"import tifffile\n",
- "from careamics_portfolio import PortfolioManager\n",
"\n",
"from careamics import CAREamist\n",
"from careamics.config import create_n2n_configuration"
@@ -89,18 +88,6 @@
"Let's have a look at them.\n"
]
},
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Download files\n",
- "portfolio = PortfolioManager()\n",
- "root_path = Path(\"./data\")\n",
- "files = portfolio.denoising.N2N_SEM.download(root_path)"
- ]
- },
{
"attachments": {},
"cell_type": "markdown",
@@ -118,6 +105,7 @@
"outputs": [],
"source": [
"# Load images\n",
+ "root_path = Path(\"./../data\")\n",
"train_image = tifffile.imread(root_path / \"denoising-N2N_SEM.unzip/SEM/train.tif\")\n",
"print(f\"Train image shape: {train_image.shape}\")\n",
"\n",
@@ -288,7 +276,7 @@
"fig, ax = plt.subplots(1, 2, figsize=(10, 10))\n",
"ax[0].imshow(test_image[-1], cmap=\"gray\")\n",
"ax[0].set_title(\"Test image lowest noise level\")\n",
- "ax[1].imshow(prediction, cmap=\"gray\")\n",
+ "ax[1].imshow(prediction[0, 0], cmap=\"gray\")\n",
"ax[1].set_title(\"Prediction\")"
]
},