-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapproximate_gradient.py
63 lines (57 loc) · 1.68 KB
/
approximate_gradient.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from _helpers import (
epsilons,
setup,
setup_after_import,
)
(
model_name,
model_output_dir,
petab_problem,
result_output_path,
test_parameters,
tool_name,
) = setup()
print(tool_name)
print(model_name)
if tool_name == 'amici':
import amici.petab_import
import amici.petab_objective
amici_model = amici.petab_import.import_petab_problem(
petab_problem=petab_problem,
model_output_dir=model_output_dir,
model_name=model_name,
)
amici_solver = amici_model.getSolver()
elif tool_name == 'pypesto':
import pypesto.petab
pypesto_importer = pypesto.petab.PetabImporter(
petab_problem=petab_problem,
output_folder=model_output_dir,
model_name=model_name,
)
amici_objective = pypesto_importer.create_objective()
amici_model = amici_objective.amici_model
amici_solver = amici_objective.amici_solver
setup_after_import(
amici_model=amici_model,
amici_solver=amici_solver,
)
for test_id, parameters in test_parameters.items():
if tool_name == 'amici':
df = amici.petab_objective.check_grad_multi_eps(
petab_problem=petab_problem,
amici_model=amici_model,
amici_solver=amici_solver,
problem_parameters=parameters,
detailed=True,
scaled_parameters=True,
multi_eps=epsilons,
ignore_missing_parameters=True,
)
elif tool_name == 'pypesto':
df = amici_objective.check_grad_multi_eps(
x=list(parameters.values()),
detailed=True,
multi_eps=epsilons,
)
df.to_csv(str(result_output_path / f'{test_id}.tsv'), sep='\t')