forked from XLabs-AI/x-flux-comfyui
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
277 lines (244 loc) · 10.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
from comfy.ldm.flux.layers import DoubleStreamBlock as DSBold
import copy
import torch
from .xflux.src.flux.modules.layers import DoubleStreamBlock as DSBnew
from .layers import (DoubleStreamBlockLoraProcessor,
DoubleStreamBlockProcessor,
DoubleStreamBlockLorasMixerProcessor,
DoubleStreamMixerProcessor)
from comfy.utils import get_attr, set_attr
import numpy as np
def CopyDSB(oldDSB):
if isinstance(oldDSB, DSBold):
tyan = copy.copy(oldDSB)
if hasattr(tyan.img_mlp[0], 'out_features'):
mlp_hidden_dim = tyan.img_mlp[0].out_features
else:
mlp_hidden_dim = 12288
mlp_ratio = mlp_hidden_dim / tyan.hidden_size
bi = DSBnew(hidden_size=tyan.hidden_size, num_heads=tyan.num_heads, mlp_ratio=mlp_ratio)
#better use __dict__ but I bit scared
(
bi.img_mod, bi.img_norm1, bi.img_attn, bi.img_norm2,
bi.img_mlp, bi.txt_mod, bi.txt_norm1, bi.txt_attn, bi.txt_norm2, bi.txt_mlp
) = (
tyan.img_mod, tyan.img_norm1, tyan.img_attn, tyan.img_norm2,
tyan.img_mlp, tyan.txt_mod, tyan.txt_norm1, tyan.txt_attn, tyan.txt_norm2, tyan.txt_mlp
)
bi.set_processor(DoubleStreamBlockProcessor())
return bi
return oldDSB
def copy_model(orig, new):
new = copy.copy(new)
new.model = copy.copy(orig.model)
new.model.diffusion_model = copy.copy(orig.model.diffusion_model)
new.model.diffusion_model.double_blocks = copy.deepcopy(orig.model.diffusion_model.double_blocks)
count = len(new.model.diffusion_model.double_blocks)
for i in range(count):
new.model.diffusion_model.double_blocks[i] = copy.copy(orig.model.diffusion_model.double_blocks[i])
new.model.diffusion_model.double_blocks[i].load_state_dict(orig.model.diffusion_model.double_blocks[0].state_dict())
"""
class PbarWrapper:
def __init__(self):
self.count = 1
self.weights = []
self.counts = []
self.w8ts = []
self.rn = 0
self.rnf = 0.0
def add(self, count, weight):
self.weights.append(weight)
self.counts.append(count)
wa = np.array(self.weights)
wa = wa/np.sum(wa)
ca = np.array(self.counts)
ml = np.multiply(ca, wa)
cas = np.sum(ml)
self.count=int(cas)
self.w8ts = wa.tolist()
def start(self):
self.rnf = 0.0
self.rn = 0
def __call__(self):
self.rn+=1
return 1
"""
def FluxUpdateModules(flux_model, pbar=None):
save_list = {}
#print((flux_model.diffusion_model.double_blocks))
#for k,v in flux_model.diffusion_model.double_blocks:
#if "double" in k:
count = len(flux_model.diffusion_model.double_blocks)
patches = {}
for i in range(count):
if pbar is not None:
pbar.update(1)
patches[f"double_blocks.{i}"]=CopyDSB(flux_model.diffusion_model.double_blocks[i])
flux_model.diffusion_model.double_blocks[i]=CopyDSB(flux_model.diffusion_model.double_blocks[i])
return patches
def is_model_pathched(model):
def test(mod):
if isinstance(mod, DSBnew):
return True
else:
for p in mod.children():
if test(p):
return True
return False
result = test(model)
return result
def attn_processors(model_flux):
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, procs):
if hasattr(module, "set_processor"):
procs[f"{name}.processor"] = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, procs)
return procs
for name, module in model_flux.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
def merge_loras(lora1, lora2):
new_block = DoubleStreamMixerProcessor()
if isinstance(lora1, DoubleStreamMixerProcessor):
new_block.set_loras(*lora1.get_loras())
new_block.set_ip_adapters(lora1.get_ip_adapters())
elif isinstance(lora1, DoubleStreamBlockLoraProcessor):
new_block.add_lora(lora1)
else:
pass
if isinstance(lora2, DoubleStreamMixerProcessor):
new_block.set_loras(*lora2.get_loras())
new_block.set_ip_adapters(lora2.get_ip_adapters())
elif isinstance(lora2, DoubleStreamBlockLoraProcessor):
new_block.add_lora(lora2)
else:
pass
return new_block
def set_attn_processor(model_flux, processor):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(attn_processors(model_flux).keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if isinstance(module.get_processor(), DoubleStreamBlockLorasMixerProcessor):
block = copy.copy(module.get_processor())
module.set_processor(copy.deepcopy(module.get_processor()))
new_block = DoubleStreamBlockLorasMixerProcessor()
#q1, q2, p1, p2, w1 = block.get_loras()
new_block.set_loras(*block.get_loras())
if not isinstance(processor, dict):
new_block.add_lora(processor)
else:
new_block.add_lora(processor.pop(f"{name}.processor"))
module.set_processor(new_block)
#block = set_attr(module, "", new_block)
elif isinstance(module.get_processor(), DoubleStreamBlockLoraProcessor):
block = DoubleStreamBlockLorasMixerProcessor()
block.add_lora(copy.copy(module.get_processor()))
if not isinstance(processor, dict):
block.add_lora(processor)
else:
block.add_lora(processor.pop(f"{name}.processor"))
module.set_processor(block)
else:
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in model_flux.named_children():
fn_recursive_attn_processor(name, module, processor)
class LATENT_PROCESSOR_COMFY:
def __init__(self):
self.scale_factor = 0.3611
self.shift_factor = 0.1159
self.latent_rgb_factors =[
[-0.0404, 0.0159, 0.0609],
[ 0.0043, 0.0298, 0.0850],
[ 0.0328, -0.0749, -0.0503],
[-0.0245, 0.0085, 0.0549],
[ 0.0966, 0.0894, 0.0530],
[ 0.0035, 0.0399, 0.0123],
[ 0.0583, 0.1184, 0.1262],
[-0.0191, -0.0206, -0.0306],
[-0.0324, 0.0055, 0.1001],
[ 0.0955, 0.0659, -0.0545],
[-0.0504, 0.0231, -0.0013],
[ 0.0500, -0.0008, -0.0088],
[ 0.0982, 0.0941, 0.0976],
[-0.1233, -0.0280, -0.0897],
[-0.0005, -0.0530, -0.0020],
[-0.1273, -0.0932, -0.0680]
]
def __call__(self, x):
return (x / self.scale_factor) + self.shift_factor
def go_back(self, x):
return (x - self.shift_factor) * self.scale_factor
def check_is_comfy_lora(sd):
for k in sd:
if "lora_down" in k or "lora_up" in k:
return True
return False
def comfy_to_xlabs_lora(sd):
sd_out = {}
for k in sd:
if "diffusion_model" in k:
new_k = (k
.replace(".lora_down.weight", ".down.weight")
.replace(".lora_up.weight", ".up.weight")
.replace(".img_attn.proj.", ".processor.proj_lora1.")
.replace(".txt_attn.proj.", ".processor.proj_lora2.")
.replace(".img_attn.qkv.", ".processor.qkv_lora1.")
.replace(".txt_attn.qkv.", ".processor.qkv_lora2."))
new_k = new_k[len("diffusion_model."):]
else:
new_k=k
sd_out[new_k] = sd[k]
return sd_out
def LinearStrengthModel(start, finish, size):
return [
(start + (finish - start) * (i / (size - 1))) for i in range(size)
]
def FirstHalfStrengthModel(start, finish, size):
sizehalf = size//2
arr = [
(start + (finish - start) * (i / (sizehalf - 1))) for i in range(sizehalf)
]
return arr+[finish]*(size-sizehalf)
def SecondHalfStrengthModel(start, finish, size):
sizehalf = size//2
arr = [
(start + (finish - start) * (i / (sizehalf - 1))) for i in range(sizehalf)
]
return [start]*(size-sizehalf)+arr
def SigmoidStrengthModel(start, finish, size):
def fade_out(x, x1, x2):
return 1 / (1 + np.exp(-(x - (x1 + x2) / 2) * 8 / (x2 - x1)))
arr = [start + (finish - start) * (fade_out(i, 0, size) - 0.5) for i in range(size)]
return arr
class ControlNetContainer:
def __init__(
self, controlnet, controlnet_cond,
controlnet_gs, controlnet_start_step,
controlnet_end_step,
):
self.controlnet_cond = controlnet_cond
self.controlnet_gs = controlnet_gs
self.controlnet_start_step = controlnet_start_step
self.controlnet_end_step = controlnet_end_step
self.controlnet = controlnet