forked from kijai/ComfyUI-SUPIR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnodes_v2.py
1227 lines (1068 loc) · 52.1 KB
/
nodes_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import torch
from omegaconf import OmegaConf
import comfy.utils
import comfy.model_management as mm
import folder_paths
import torch.cuda
import torch.nn.functional as F
from .sgm.util import instantiate_from_config
from .SUPIR.util import convert_dtype, load_state_dict
from .sgm.modules.distributions.distributions import DiagonalGaussianDistribution
import open_clip
from contextlib import contextmanager, nullcontext
import gc
from contextlib import nullcontext
try:
from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
is_accelerate_available = True
except:
pass
from transformers import (
CLIPTextModel,
CLIPTokenizer,
CLIPTextConfig,
)
script_directory = os.path.dirname(os.path.abspath(__file__))
def dummy_build_vision_tower(*args, **kwargs):
# Monkey patch the CLIP class before you create an instance.
return None
@contextmanager
def patch_build_vision_tower():
original_build_vision_tower = open_clip.model._build_vision_tower
open_clip.model._build_vision_tower = dummy_build_vision_tower
try:
yield
finally:
open_clip.model._build_vision_tower = original_build_vision_tower
def build_text_model_from_openai_state_dict(
state_dict: dict,
device,
cast_dtype=torch.float16,
):
embed_dim = state_dict["text_projection"].shape[1]
context_length = state_dict["positional_embedding"].shape[0]
vocab_size = state_dict["token_embedding.weight"].shape[0]
transformer_width = state_dict["ln_final.weight"].shape[0]
transformer_heads = transformer_width // 64
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
vision_cfg = None
text_cfg = open_clip.CLIPTextCfg(
context_length=context_length,
vocab_size=vocab_size,
width=transformer_width,
heads=transformer_heads,
layers=transformer_layers,
)
with patch_build_vision_tower():
with (init_empty_weights() if is_accelerate_available else nullcontext()):
model = open_clip.CLIP(
embed_dim,
vision_cfg=vision_cfg,
text_cfg=text_cfg,
quick_gelu=True,
cast_dtype=cast_dtype,
)
if is_accelerate_available:
for key in state_dict:
set_module_tensor_to_device(model, key, device=device, value=state_dict[key])
else:
model.load_state_dict(state_dict, strict=False)
model = model.eval()
for param in model.parameters():
param.requires_grad = False
return model
class SUPIR_encode:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"SUPIR_VAE": ("SUPIRVAE",),
"image": ("IMAGE",),
"use_tiled_vae": ("BOOLEAN", {"default": True}),
"encoder_tile_size": ("INT", {"default": 512, "min": 64, "max": 8192, "step": 64}),
"encoder_dtype": (
[
'bf16',
'fp32',
'auto'
], {
"default": 'auto'
}),
}
}
RETURN_TYPES = ("LATENT",)
RETURN_NAMES = ("latent",)
FUNCTION = "encode"
CATEGORY = "SUPIR"
def encode(self, SUPIR_VAE, image, encoder_dtype, use_tiled_vae, encoder_tile_size):
device = mm.get_torch_device()
mm.unload_all_models()
if encoder_dtype == 'auto':
try:
if mm.should_use_bf16():
print("Encoder using bf16")
vae_dtype = 'bf16'
else:
print("Encoder using fp32")
vae_dtype = 'fp32'
except:
raise AttributeError("ComfyUI version too old, can't autodetect properly. Set your dtypes manually.")
else:
vae_dtype = encoder_dtype
print(f"Encoder using {vae_dtype}")
dtype = convert_dtype(vae_dtype)
image = image.permute(0, 3, 1, 2)
B, C, H, W = image.shape
downscale_ratio = 32
orig_H, orig_W = H, W
if W % downscale_ratio != 0:
W = W - (W % downscale_ratio)
if H % downscale_ratio != 0:
H = H - (H % downscale_ratio)
if orig_H % downscale_ratio != 0 or orig_W % downscale_ratio != 0:
image = F.interpolate(image, size=(H, W), mode="bicubic")
resized_image = image.to(device)
if use_tiled_vae:
from .SUPIR.utils.tilevae import VAEHook
# Store the `original_forward` only if it hasn't been stored already
if not hasattr(SUPIR_VAE.encoder, 'original_forward'):
SUPIR_VAE.encoder.original_forward = SUPIR_VAE.encoder.forward
SUPIR_VAE.encoder.forward = VAEHook(
SUPIR_VAE.encoder, encoder_tile_size, is_decoder=False, fast_decoder=False,
fast_encoder=False, color_fix=False, to_gpu=True)
else:
# Only assign `original_forward` back if it exists
if hasattr(SUPIR_VAE.encoder, 'original_forward'):
SUPIR_VAE.encoder.forward = SUPIR_VAE.encoder.original_forward
pbar = comfy.utils.ProgressBar(B)
out = []
for img in resized_image:
SUPIR_VAE.to(dtype).to(device)
autocast_condition = (dtype != torch.float32) and not comfy.model_management.is_device_mps(device)
with torch.autocast(comfy.model_management.get_autocast_device(device), dtype=dtype) if autocast_condition else nullcontext():
z = SUPIR_VAE.encode(img.unsqueeze(0))
z = z * 0.13025
out.append(z)
pbar.update(1)
if len(out[0].shape) == 4:
samples_out_stacked = torch.cat(out, dim=0)
else:
samples_out_stacked = torch.stack(out, dim=0)
return ({"samples":samples_out_stacked, "original_size": [orig_H, orig_W]},)
class SUPIR_decode:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"SUPIR_VAE": ("SUPIRVAE",),
"latents": ("LATENT",),
"use_tiled_vae": ("BOOLEAN", {"default": True}),
"decoder_tile_size": ("INT", {"default": 512, "min": 64, "max": 8192, "step": 64}),
}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = "decode"
CATEGORY = "SUPIR"
def decode(self, SUPIR_VAE, latents, use_tiled_vae, decoder_tile_size):
device = mm.get_torch_device()
mm.unload_all_models()
samples = latents["samples"]
B, H, W, C = samples.shape
pbar = comfy.utils.ProgressBar(B)
if mm.should_use_bf16():
print("Decoder using bf16")
dtype = torch.bfloat16
else:
print("Decoder using fp32")
dtype = torch.float32
print("SUPIR decoder using", dtype)
SUPIR_VAE.to(dtype).to(device)
samples = samples.to(device)
if use_tiled_vae:
from .SUPIR.utils.tilevae import VAEHook
# Store the `original_forward` only if it hasn't been stored already
if not hasattr(SUPIR_VAE.decoder, 'original_forward'):
SUPIR_VAE.decoder.original_forward = SUPIR_VAE.decoder.forward
SUPIR_VAE.decoder.forward = VAEHook(
SUPIR_VAE.decoder, decoder_tile_size // 8, is_decoder=True, fast_decoder=False,
fast_encoder=False, color_fix=False, to_gpu=True)
else:
# Only assign `original_forward` back if it exists
if hasattr(SUPIR_VAE.decoder, 'original_forward'):
SUPIR_VAE.decoder.forward = SUPIR_VAE.decoder.original_forward
out = []
for sample in samples:
autocast_condition = (dtype != torch.float32) and not comfy.model_management.is_device_mps(device)
with torch.autocast(comfy.model_management.get_autocast_device(device), dtype=dtype) if autocast_condition else nullcontext():
sample = 1.0 / 0.13025 * sample
decoded_image = SUPIR_VAE.decode(sample.unsqueeze(0))
out.append(decoded_image)
pbar.update(1)
decoded_out= torch.cat(out, dim=0).float()
if "original_size" in latents and latents["original_size"] is not None:
orig_H, orig_W = latents["original_size"]
if decoded_out.shape[2] != orig_H or decoded_out.shape[3] != orig_W:
print("Restoring original dimensions: ", orig_W,"x",orig_H)
decoded_out = F.interpolate(decoded_out, size=(orig_H, orig_W), mode="bicubic")
decoded_out = torch.clip(decoded_out, 0, 1)
decoded_out = decoded_out.cpu().to(torch.float32).permute(0, 2, 3, 1)
return (decoded_out,)
class SUPIR_first_stage:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"SUPIR_VAE": ("SUPIRVAE",),
"image": ("IMAGE",),
"use_tiled_vae": ("BOOLEAN", {"default": True}),
"encoder_tile_size": ("INT", {"default": 512, "min": 64, "max": 8192, "step": 64}),
"decoder_tile_size": ("INT", {"default": 512, "min": 64, "max": 8192, "step": 64}),
"encoder_dtype": (
[
'bf16',
'fp32',
'auto'
], {
"default": 'auto'
}),
}
}
RETURN_TYPES = ("SUPIRVAE", "IMAGE", "LATENT",)
RETURN_NAMES = ("SUPIR_VAE", "denoised_image", "denoised_latents",)
FUNCTION = "process"
CATEGORY = "SUPIR"
DESCRIPTION = """
SUPIR "first stage" processing.
Encodes and decodes the image using SUPIR's "denoise_encoder", purpose
is to fix compression artifacts and such, ends up blurring the image often
which is expected. Can be replaced with any other denoiser/blur or not used at all.
"""
def process(self, SUPIR_VAE, image, encoder_dtype, use_tiled_vae, encoder_tile_size, decoder_tile_size):
device = mm.get_torch_device()
mm.unload_all_models()
if encoder_dtype == 'auto':
try:
if mm.should_use_bf16():
print("Encoder using bf16")
vae_dtype = 'bf16'
else:
print("Encoder using fp32")
vae_dtype = 'fp32'
except:
raise AttributeError("ComfyUI version too old, can't autodetect properly. Set your dtypes manually.")
else:
vae_dtype = encoder_dtype
print(f"Encoder using {vae_dtype}")
dtype = convert_dtype(vae_dtype)
if use_tiled_vae:
from .SUPIR.utils.tilevae import VAEHook
# Store the `original_forward` only if it hasn't been stored already
if not hasattr(SUPIR_VAE.encoder, 'original_forward'):
SUPIR_VAE.denoise_encoder.original_forward = SUPIR_VAE.denoise_encoder.forward
SUPIR_VAE.decoder.original_forward = SUPIR_VAE.decoder.forward
SUPIR_VAE.denoise_encoder.forward = VAEHook(
SUPIR_VAE.denoise_encoder, encoder_tile_size, is_decoder=False, fast_decoder=False,
fast_encoder=False, color_fix=False, to_gpu=True)
SUPIR_VAE.decoder.forward = VAEHook(
SUPIR_VAE.decoder, decoder_tile_size // 8, is_decoder=True, fast_decoder=False,
fast_encoder=False, color_fix=False, to_gpu=True)
else:
# Only assign `original_forward` back if it exists
if hasattr(SUPIR_VAE.denoise_encoder, 'original_forward'):
SUPIR_VAE.denoise_encoder.forward = SUPIR_VAE.denoise_encoder.original_forward
SUPIR_VAE.decoder.forward = SUPIR_VAE.decoder.original_forward
image = image.permute(0, 3, 1, 2)
B, C, H, W = image.shape
downscale_ratio = 32
orig_H, orig_W = H, W
if W % downscale_ratio != 0:
W = W - (W % downscale_ratio)
if H % downscale_ratio != 0:
H = H - (H % downscale_ratio)
if orig_H % downscale_ratio != 0 or orig_W % downscale_ratio != 0:
image = F.interpolate(image, size=(H, W), mode="bicubic")
resized_image = image.to(device)
pbar = comfy.utils.ProgressBar(B)
out = []
out_samples = []
for img in resized_image:
SUPIR_VAE.to(dtype).to(device)
autocast_condition = (dtype != torch.float32) and not comfy.model_management.is_device_mps(device)
with torch.autocast(comfy.model_management.get_autocast_device(device), dtype=dtype) if autocast_condition else nullcontext():
h = SUPIR_VAE.denoise_encoder(img.unsqueeze(0))
moments = SUPIR_VAE.quant_conv(h)
posterior = DiagonalGaussianDistribution(moments)
sample = posterior.sample()
decoded_images = SUPIR_VAE.decode(sample).float()
out.append(decoded_images.cpu())
out_samples.append(sample.cpu() * 0.13025)
pbar.update(1)
out_stacked = torch.cat(out, dim=0).to(torch.float32).permute(0, 2, 3, 1)
out_samples_stacked = torch.cat(out_samples, dim=0)
original_size = [orig_H, orig_W]
return (SUPIR_VAE, out_stacked, {"samples": out_samples_stacked, "original_size": original_size},)
class SUPIR_sample:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"SUPIR_model": ("SUPIRMODEL",),
"latents": ("LATENT",),
"positive": ("SUPIR_cond_pos",),
"negative": ("SUPIR_cond_neg",),
"seed": ("INT", {"default": 123, "min": 0, "max": 0xffffffffffffffff, "step": 1}),
"steps": ("INT", {"default": 45, "min": 3, "max": 4096, "step": 1}),
"cfg_scale_start": ("FLOAT", {"default": 4.0, "min": 0.0, "max": 100.0, "step": 0.01}),
"cfg_scale_end": ("FLOAT", {"default": 4.0, "min": 0, "max": 100.0, "step": 0.01}),
"EDM_s_churn": ("INT", {"default": 5, "min": 0, "max": 40, "step": 1}),
"s_noise": ("FLOAT", {"default": 1.003, "min": 1.0, "max": 1.1, "step": 0.001}),
"DPMPP_eta": ("FLOAT", {"default": 1.0, "min": 0, "max": 10.0, "step": 0.01}),
"control_scale_start": ("FLOAT", {"default": 1.0, "min": 0, "max": 10.0, "step": 0.01}),
"control_scale_end": ("FLOAT", {"default": 1.0, "min": 0, "max": 10.0, "step": 0.01}),
"restore_cfg": ("FLOAT", {"default": -1.0, "min": -1.0, "max": 20.0, "step": 0.01}),
"keep_model_loaded": ("BOOLEAN", {"default": False}),
"sampler": (
[
'RestoreDPMPP2MSampler',
'RestoreEDMSampler',
'TiledRestoreDPMPP2MSampler',
'TiledRestoreEDMSampler',
], {
"default": 'RestoreEDMSampler'
}),
},
"optional": {
"sampler_tile_size": ("INT", {"default": 1024, "min": 64, "max": 4096, "step": 32}),
"sampler_tile_stride": ("INT", {"default": 512, "min": 32, "max": 2048, "step": 32}),
}
}
RETURN_TYPES = ("LATENT",)
RETURN_NAMES = ("latent",)
FUNCTION = "sample"
CATEGORY = "SUPIR"
DESCRIPTION = """
- **latent:**
Latent to sample from, when using SUPIR latent this is just for the noise shape,
it's actually not used otherwise here. Identical to feeding this comfy empty latent.
If fed anything else it's used as it is, no noise is added.
- **cfg:**
Linearly scaled CFG is always used, first step will use the cfg_scale_start value,
and that is interpolated to the cfg_scale_end value at last step.
To disable scaling set these values to be the same.
- **EDM_s_churn:**
controls the rate of adaptation of the diffusion process to changes in noise levels
over time. Has no effect with DPMPP samplers.
- **s_noise:**
This parameter directly controls the amount of noise added to the image at each
step of the diffusion process.
- **DPMPP_eta:**
Scaling factor that influences the diffusion process by adjusting how the denoising
process adapts to changes in noise levels over time.
No effect with EDM samplers.
- **control_scale:**
The strenght of the SUPIR control model, scales linearly from start to end.
Lower values allow more freedom from the input image.
- **restore_cfg:**
Controls the degree of restoration towards the original image during the diffusion
process. It allows for dome fine-tuning of the process.
- **samplers:**
EDM samplers need lots of steps but generally have better quality.
DPMPP samplers work well with lower steps, good for lightning models.
Tiled samplers enable tiled diffusion process, this is very slow but allows higher
resolutions to be used by saving VRAM. Tile size should be chosen so the image
is evenly tiled. Tile stride affects the overlap of the tiles. Check the
SUPIR Tiles -node for preview to understand how the image is tiled.
"""
def sample(self, SUPIR_model, latents, steps, seed, cfg_scale_end, EDM_s_churn, s_noise, positive, negative,
cfg_scale_start, control_scale_start, control_scale_end, restore_cfg, keep_model_loaded, DPMPP_eta,
sampler, sampler_tile_size=1024, sampler_tile_stride=512):
torch.manual_seed(seed)
device = mm.get_torch_device()
mm.unload_all_models()
mm.soft_empty_cache()
self.sampler_config = {
'target': f'.sgm.modules.diffusionmodules.sampling.{sampler}',
'params': {
'num_steps': steps,
'restore_cfg': restore_cfg,
's_churn': EDM_s_churn,
's_noise': s_noise,
'discretization_config': {
'target': '.sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization'
},
'guider_config': {
'target': '.sgm.modules.diffusionmodules.guiders.LinearCFG',
'params': {
'scale': cfg_scale_start,
'scale_min': cfg_scale_end
}
}
}
}
if 'Tiled' in sampler:
self.sampler_config['params']['tile_size'] = sampler_tile_size // 8
self.sampler_config['params']['tile_stride'] = sampler_tile_stride // 8
if 'DPMPP' in sampler:
self.sampler_config['params']['eta'] = DPMPP_eta
self.sampler_config['params']['restore_cfg'] = -1
if not hasattr (self,'sampler') or self.sampler_config != self.current_sampler_config:
self.sampler = instantiate_from_config(self.sampler_config)
self.current_sampler_config = self.sampler_config
print("sampler_config: ", self.sampler_config)
SUPIR_model.denoiser.to(device)
SUPIR_model.model.diffusion_model.to(device)
SUPIR_model.model.control_model.to(device)
use_linear_control_scale = control_scale_start != control_scale_end
denoiser = lambda input, sigma, c, control_scale: SUPIR_model.denoiser(SUPIR_model.model, input, sigma, c, control_scale)
original_size = positive['original_size']
positive = positive['cond']
negative = negative['uncond']
samples = latents["samples"]
samples = samples.to(device)
#print("positives: ", len(positive))
#print("negatives: ", len(negative))
out = []
pbar = comfy.utils.ProgressBar(samples.shape[0])
for i, sample in enumerate(samples):
try:
if 'original_size' in latents:
print("Using random noise")
noised_z = torch.randn_like(sample.unsqueeze(0), device=samples.device)
else:
print("Using latent from input")
noised_z = torch.randn_like(sample.unsqueeze(0), device=samples.device)
noised_z += sample.unsqueeze(0)
if len(positive) != len(samples):
print("Tiled sampling")
_samples = self.sampler(denoiser, noised_z, cond=positive, uc=negative, x_center=sample.unsqueeze(0), control_scale=control_scale_end,
use_linear_control_scale=use_linear_control_scale, control_scale_start=control_scale_start)
else:
#print("positives[i]: ", len(positive[i]))
#print("negatives[i]: ", len(negative[i]))
_samples = self.sampler(denoiser, noised_z, cond=positive[i], uc=negative[i], x_center=sample.unsqueeze(0), control_scale=control_scale_end,
use_linear_control_scale=use_linear_control_scale, control_scale_start=control_scale_start)
except torch.cuda.OutOfMemoryError as e:
mm.free_memory(mm.get_total_memory(mm.get_torch_device()), mm.get_torch_device())
SUPIR_model = None
mm.soft_empty_cache()
print("It's likely that too large of an image or batch_size for SUPIR was used,"
" and it has devoured all of the memory it had reserved, you may need to restart ComfyUI. Make sure you are using tiled_vae, "
" you can also try using fp8 for reduced memory usage if your system supports it.")
raise e
out.append(_samples)
print("Sampled ", i+1, " of ", samples.shape[0])
pbar.update(1)
if not keep_model_loaded:
SUPIR_model.denoiser.to('cpu')
SUPIR_model.model.diffusion_model.to('cpu')
SUPIR_model.model.control_model.to('cpu')
mm.soft_empty_cache()
if len(out[0].shape) == 4:
samples_out_stacked = torch.cat(out, dim=0)
else:
samples_out_stacked = torch.stack(out, dim=0)
if original_size is None:
samples_out_stacked = samples_out_stacked / 0.13025
return ({"samples":samples_out_stacked, "original_size": original_size},)
class SUPIR_conditioner:
# @classmethod
# def IS_CHANGED(s):
# return ""
@classmethod
def INPUT_TYPES(s):
return {"required": {
"SUPIR_model": ("SUPIRMODEL",),
"latents": ("LATENT",),
"positive_prompt": ("STRING", {"multiline": True, "default": "high quality, detailed", }),
"negative_prompt": ("STRING", {"multiline": True, "default": "bad quality, blurry, messy", }),
},
"optional": {
"captions": ("STRING", {"forceInput": True, "multiline": False, "default": "", }),
}
}
RETURN_TYPES = ("SUPIR_cond_pos", "SUPIR_cond_neg",)
RETURN_NAMES = ("positive", "negative",)
FUNCTION = "condition"
CATEGORY = "SUPIR"
DESCRIPTION = """
Creates the conditioning for the sampler.
Caption input is optional, when it receives a single caption, it's added to the positive prompt.
If a list of caption is given for single input image, the captions need to match the number of tiles,
refer to the SUPIR Tiles node.
If a list of captions is given and it matches the incoming image batch, each image uses corresponding caption.
"""
def condition(self, SUPIR_model, latents, positive_prompt, negative_prompt, captions=""):
device = mm.get_torch_device()
mm.soft_empty_cache()
if "original_size" in latents:
original_size = latents["original_size"]
samples = latents["samples"]
else:
original_size = None
samples = latents["samples"] * 0.13025
N, H, W, C = samples.shape
import copy
if not isinstance(captions, list):
captions_list = []
captions_list.append([captions])
captions_list = captions_list * N
else:
captions_list = captions
print("captions: ", captions_list)
SUPIR_model.conditioner.to(device)
samples = samples.to(device)
uc = []
pbar = comfy.utils.ProgressBar(N)
autocast_condition = (SUPIR_model.model.dtype != torch.float32) and not comfy.model_management.is_device_mps(device)
with torch.autocast(comfy.model_management.get_autocast_device(device), dtype=SUPIR_model.model.dtype) if autocast_condition else nullcontext():
if N != len(captions_list): #Tiled captioning
print("Tiled captioning")
c = []
uc = []
for i, caption in enumerate(captions_list):
cond = {}
cond['original_size_as_tuple'] = torch.tensor([[1024, 1024]]).to(device)
cond['crop_coords_top_left'] = torch.tensor([[0, 0]]).to(device)
cond['target_size_as_tuple'] = torch.tensor([[1024, 1024]]).to(device)
cond['aesthetic_score'] = torch.tensor([[9.0]]).to(device)
cond['control'] = samples[0].unsqueeze(0)
uncond = copy.deepcopy(cond)
uncond['txt'] = [negative_prompt]
cond['txt'] = [''.join([caption[0], positive_prompt])]
if i == 0:
_c, uc = SUPIR_model.conditioner.get_unconditional_conditioning(cond, uncond)
else:
_c, _ = SUPIR_model.conditioner.get_unconditional_conditioning(cond, None)
c.append(_c)
pbar.update(1)
else: #batch captioning
print("Batch captioning")
c = []
uc = []
for i, sample in enumerate(samples):
cond = {}
cond['original_size_as_tuple'] = torch.tensor([[1024, 1024]]).to(device)
cond['crop_coords_top_left'] = torch.tensor([[0, 0]]).to(device)
cond['target_size_as_tuple'] = torch.tensor([[1024, 1024]]).to(device)
cond['aesthetic_score'] = torch.tensor([[9.0]]).to(device)
cond['control'] = sample.unsqueeze(0)
uncond = copy.deepcopy(cond)
uncond['txt'] = [negative_prompt]
cond['txt'] = [''.join([captions_list[i][0], positive_prompt])]
_c, _uc = SUPIR_model.conditioner.get_unconditional_conditioning(cond, uncond)
c.append(_c)
uc.append(_uc)
pbar.update(1)
SUPIR_model.conditioner.to('cpu')
if "original_size" in latents:
original_size = latents["original_size"]
else:
original_size = None
return ({"cond": c, "original_size":original_size}, {"uncond": uc},)
class SUPIR_model_loader:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"supir_model": (folder_paths.get_filename_list("checkpoints"),),
"sdxl_model": (folder_paths.get_filename_list("checkpoints"),),
"fp8_unet": ("BOOLEAN", {"default": False}),
"diffusion_dtype": (
[
'fp16',
'bf16',
'fp32',
'auto'
], {
"default": 'auto'
}),
},
}
RETURN_TYPES = ("SUPIRMODEL", "SUPIRVAE")
RETURN_NAMES = ("SUPIR_model","SUPIR_VAE",)
FUNCTION = "process"
CATEGORY = "SUPIR"
DESCRIPTION = """
Old loader, not recommended to be used.
Loads the SUPIR model and the selected SDXL model and merges them.
"""
def process(self, supir_model, sdxl_model, diffusion_dtype, fp8_unet):
device = mm.get_torch_device()
mm.unload_all_models()
SUPIR_MODEL_PATH = folder_paths.get_full_path("checkpoints", supir_model)
SDXL_MODEL_PATH = folder_paths.get_full_path("checkpoints", sdxl_model)
config_path = os.path.join(script_directory, "options/SUPIR_v0.yaml")
clip_config_path = os.path.join(script_directory, "configs/clip_vit_config.json")
tokenizer_path = os.path.join(script_directory, "configs/tokenizer")
custom_config = {
'sdxl_model': sdxl_model,
'diffusion_dtype': diffusion_dtype,
'supir_model': supir_model,
'fp8_unet': fp8_unet,
}
if diffusion_dtype == 'auto':
try:
if mm.should_use_fp16():
print("Diffusion using fp16")
dtype = torch.float16
model_dtype = 'fp16'
elif mm.should_use_bf16():
print("Diffusion using bf16")
dtype = torch.bfloat16
model_dtype = 'bf16'
else:
print("Diffusion using fp32")
dtype = torch.float32
model_dtype = 'fp32'
except:
raise AttributeError("ComfyUI version too old, can't autodetect properly. Set your dtypes manually.")
else:
print(f"Diffusion using {diffusion_dtype}")
dtype = convert_dtype(diffusion_dtype)
model_dtype = diffusion_dtype
if not hasattr(self, "model") or self.model is None or self.current_config != custom_config:
self.current_config = custom_config
self.model = None
mm.soft_empty_cache()
config = OmegaConf.load(config_path)
if mm.XFORMERS_IS_AVAILABLE:
print("Using XFORMERS")
config.model.params.control_stage_config.params.spatial_transformer_attn_type = "softmax-xformers"
config.model.params.network_config.params.spatial_transformer_attn_type = "softmax-xformers"
config.model.params.first_stage_config.params.ddconfig.attn_type = "vanilla-xformers"
config.model.params.diffusion_dtype = model_dtype
config.model.target = ".SUPIR.models.SUPIR_model_v2.SUPIRModel"
pbar = comfy.utils.ProgressBar(5)
self.model = instantiate_from_config(config.model).cpu()
self.model.model.dtype = dtype
pbar.update(1)
try:
print(f"Attempting to load SDXL model: [{SDXL_MODEL_PATH}]")
sdxl_state_dict = load_state_dict(SDXL_MODEL_PATH)
self.model.load_state_dict(sdxl_state_dict, strict=False)
if fp8_unet:
self.model.model.to(torch.float8_e4m3fn)
else:
self.model.model.to(dtype)
pbar.update(1)
except:
raise Exception("Failed to load SDXL model")
#first clip model from SDXL checkpoint
try:
print("Loading first clip model from SDXL checkpoint")
replace_prefix = {}
replace_prefix["conditioner.embedders.0.transformer."] = ""
sd = comfy.utils.state_dict_prefix_replace(sdxl_state_dict, replace_prefix, filter_keys=False)
clip_text_config = CLIPTextConfig.from_pretrained(clip_config_path)
self.model.conditioner.embedders[0].tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path)
self.model.conditioner.embedders[0].transformer = CLIPTextModel(clip_text_config)
self.model.conditioner.embedders[0].transformer.load_state_dict(sd, strict=False)
self.model.conditioner.embedders[0].eval()
self.model.conditioner.embedders[0].to(dtype)
for param in self.model.conditioner.embedders[0].parameters():
param.requires_grad = False
pbar.update(1)
except:
raise Exception("Failed to load first clip model from SDXL checkpoint")
del sdxl_state_dict
#second clip model from SDXL checkpoint
try:
print("Loading second clip model from SDXL checkpoint")
replace_prefix2 = {}
replace_prefix2["conditioner.embedders.1.model."] = ""
sd = comfy.utils.state_dict_prefix_replace(sd, replace_prefix2, filter_keys=True)
clip_g = build_text_model_from_openai_state_dict(sd, device, cast_dtype=dtype)
self.model.conditioner.embedders[1].model = clip_g
self.model.conditioner.embedders[1].to(dtype)
pbar.update(1)
except:
raise Exception("Failed to load second clip model from SDXL checkpoint")
del sd, clip_g
try:
print(f'Attempting to load SUPIR model: [{SUPIR_MODEL_PATH}]')
supir_state_dict = load_state_dict(SUPIR_MODEL_PATH)
self.model.load_state_dict(supir_state_dict, strict=False)
if fp8_unet:
self.model.model.to(torch.float8_e4m3fn)
else:
self.model.model.to(dtype)
del supir_state_dict
pbar.update(1)
except:
raise Exception("Failed to load SUPIR model")
mm.soft_empty_cache()
return (self.model, self.model.first_stage_model,)
class SUPIR_model_loader_v2:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model" :("MODEL",),
"clip": ("CLIP",),
"vae": ("VAE",),
"supir_model": (folder_paths.get_filename_list("checkpoints"),),
"fp8_unet": ("BOOLEAN", {"default": False}),
"diffusion_dtype": (
[
'fp16',
'bf16',
'fp32',
'auto'
], {
"default": 'auto'
}),
},
"optional": {
"high_vram": ("BOOLEAN", {"default": False}),
}
}
RETURN_TYPES = ("SUPIRMODEL", "SUPIRVAE")
RETURN_NAMES = ("SUPIR_model","SUPIR_VAE",)
FUNCTION = "process"
CATEGORY = "SUPIR"
DESCRIPTION = """
Loads the SUPIR model and merges it with the SDXL model.
Diffusion type should be kept on auto, unless you have issues loading the model.
fp8_unet casts the unet weights to torch.float8_e4m3fn, which saves a lot of VRAM but has slight quality impact.
high_vram: uses Accelerate to load weights to GPU, slightly faster model loading.
"""
def process(self, supir_model, diffusion_dtype, fp8_unet, model, clip, vae, high_vram=False):
if high_vram:
device = mm.get_torch_device()
else:
device = mm.unet_offload_device()
print("Loading weights to: ", device)
mm.unload_all_models()
SUPIR_MODEL_PATH = folder_paths.get_full_path("checkpoints", supir_model)
config_path = os.path.join(script_directory, "options/SUPIR_v0.yaml")
clip_config_path = os.path.join(script_directory, "configs/clip_vit_config.json")
tokenizer_path = os.path.join(script_directory, "configs/tokenizer")
custom_config = {
'diffusion_dtype': diffusion_dtype,
'supir_model': supir_model,
'fp8_unet': fp8_unet,
'model': model,
"clip": clip,
"vae": vae
}
if diffusion_dtype == 'auto':
try:
if mm.should_use_fp16():
print("Diffusion using fp16")
dtype = torch.float16
elif mm.should_use_bf16():
print("Diffusion using bf16")
dtype = torch.bfloat16
else:
print("Diffusion using fp32")
dtype = torch.float32
except:
raise AttributeError("ComfyUI version too old, can't autodecet properly. Set your dtypes manually.")
else:
print(f"Diffusion using {diffusion_dtype}")
dtype = convert_dtype(diffusion_dtype)
if not hasattr(self, "model") or self.model is None or self.current_config != custom_config:
self.current_config = custom_config
self.model = None
mm.soft_empty_cache()
config = OmegaConf.load(config_path)
if mm.XFORMERS_IS_AVAILABLE:
print("Using XFORMERS")
config.model.params.control_stage_config.params.spatial_transformer_attn_type = "softmax-xformers"
config.model.params.network_config.params.spatial_transformer_attn_type = "softmax-xformers"
config.model.params.first_stage_config.params.ddconfig.attn_type = "vanilla-xformers"
config.model.target = ".SUPIR.models.SUPIR_model_v2.SUPIRModel"
pbar = comfy.utils.ProgressBar(5)
#with (init_empty_weights() if is_accelerate_available else nullcontext()):
self.model = instantiate_from_config(config.model).cpu()
self.model.model.dtype = dtype
pbar.update(1)
try:
print(f"Attempting to load SDXL model from node inputs")
mm.load_model_gpu(model)
sdxl_state_dict = model.model.state_dict_for_saving(None, vae.get_sd(), None)
if is_accelerate_available:
for key in sdxl_state_dict:
set_module_tensor_to_device(self.model, key, device=device, dtype=dtype, value=sdxl_state_dict[key])
else:
self.model.load_state_dict(sdxl_state_dict, strict=False)
if fp8_unet:
self.model.model.to(torch.float8_e4m3fn)
else:
self.model.model.to(dtype)
del sdxl_state_dict
pbar.update(1)
except:
raise Exception("Failed to load SDXL model")
gc.collect()
mm.soft_empty_cache()
#first clip model from SDXL checkpoint
try:
print("Loading first clip model from SDXL checkpoint")
clip_sd = None
clip_model = clip.load_model()
mm.load_model_gpu(clip_model)
clip_sd = clip.get_sd()
clip_sd = model.model.model_config.process_clip_state_dict_for_saving(clip_sd)
replace_prefix = {}
replace_prefix["conditioner.embedders.0.transformer."] = ""
clip_l_sd = comfy.utils.state_dict_prefix_replace(clip_sd, replace_prefix, filter_keys=True)
clip_text_config = CLIPTextConfig.from_pretrained(clip_config_path)
self.model.conditioner.embedders[0].tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path)
with (init_empty_weights() if is_accelerate_available else nullcontext()):
self.model.conditioner.embedders[0].transformer = CLIPTextModel(clip_text_config)
if is_accelerate_available:
for key in clip_l_sd:
set_module_tensor_to_device(self.model.conditioner.embedders[0].transformer, key, device=device, dtype=dtype, value=clip_l_sd[key])
else:
self.model.conditioner.embedders[0].transformer.load_state_dict(clip_l_sd, strict=False)
self.model.conditioner.embedders[0].eval()
for param in self.model.conditioner.embedders[0].parameters():
param.requires_grad = False
self.model.conditioner.embedders[0].to(dtype)
del clip_l_sd
pbar.update(1)
except:
raise Exception("Failed to load first clip model from SDXL checkpoint")
gc.collect()
mm.soft_empty_cache()
#second clip model from SDXL checkpoint
try:
print("Loading second clip model from SDXL checkpoint")
replace_prefix2 = {}
replace_prefix2["conditioner.embedders.1.model."] = ""
clip_g_sd = comfy.utils.state_dict_prefix_replace(clip_sd, replace_prefix2, filter_keys=True)
clip_g = build_text_model_from_openai_state_dict(clip_g_sd, device, cast_dtype=dtype)
self.model.conditioner.embedders[1].model = clip_g
self.model.conditioner.embedders[1].model.to(dtype)
del clip_g_sd
pbar.update(1)
except:
raise Exception("Failed to load second clip model from SDXL checkpoint")
try:
print(f'Attempting to load SUPIR model: [{SUPIR_MODEL_PATH}]')
supir_state_dict = load_state_dict(SUPIR_MODEL_PATH)
if "Q" not in supir_model or not is_accelerate_available: #I don't know why this doesn't work with the Q model.
for key in supir_state_dict:
set_module_tensor_to_device(self.model, key, device=device, dtype=dtype, value=supir_state_dict[key])
else:
self.model.load_state_dict(supir_state_dict, strict=False)
if fp8_unet:
self.model.model.to(torch.float8_e4m3fn)
else:
self.model.model.to(dtype)
del supir_state_dict
pbar.update(1)
except:
raise Exception("Failed to load SUPIR model")
mm.soft_empty_cache()
return (self.model, self.model.first_stage_model,)
class SUPIR_model_loader_v2_clip:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model" :("MODEL",),
"clip_l": ("CLIP",),
"clip_g": ("CLIP",),
"vae": ("VAE",),
"supir_model": (folder_paths.get_filename_list("checkpoints"),),
"fp8_unet": ("BOOLEAN", {"default": False}),
"diffusion_dtype": (
[
'fp16',
'bf16',