forked from andabi/music-source-separation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_unet.py
executable file
·188 lines (129 loc) · 4.91 KB
/
test_unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#from preprocess_data import *
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
from kapre_helpers import *
from data import Data
from config import TrainConfig, ModelConfig, EvalConfig
from preprocess import *
from utils import *
# from model import Model
# from unet_definity import unet
# Init Params
nwins = (ModelConfig.SR * TrainConfig.SECONDS) / ModelConfig.L_FRAME
nbins = int(ModelConfig.L_FRAME * nwins)
# Load Data
data = Data(TrainConfig.DATA_PATH)
mix, music, voc, wavfiles = data.next_wavs(sec=TrainConfig.SECONDS,
size=TrainConfig.NUM_WAVFILE)
# Export Input File
librosa.output.write_wav(path='input.wav', y=voc.T, sr=ModelConfig.SR, norm=True)
# Batch to Spectogram
x = voc
x = to_spectrogram(x)
x_phase = get_phase(x)
x = get_magnitude(x)
print('x before batch {}'.format(x.shape))
batch_size = x.shape[0]
# Convert to unet shape, eg not 1, 513 x 513
x = x[:,0:512,0:512]
# Export wav to check if spectogram was ok
nd_array_to_txt(filename='librosa_spec', data=x)
out_wav = to_wav(x, x_phase[:,0:512,0:512])
write_wav(data = out_wav.T, path = 'out_before')
# Export spectogram images
for i in range(batch_size):
print('spectogram-before-model-' + str(i) + '.png')
plot_spect(x, name='spectogram-before' + str(i) + '.png')
# ################# testing
# print('voc shape {}'.format(voc.shape))
# inputs_mel = Input(voc.shape)
# melspec = Melspectrogram(
# input_shape=voc.shape,
# n_dft=ModelConfig.L_FRAME,
# n_hop=ModelConfig.L_HOP,
# n_mels=ModelConfig.N_MELS,
# sr=ModelConfig.SR,
# fmin=ModelConfig.F_MIN,
# fmax=ModelConfig.SR / 2,
# trainable_fb=False,
# trainable_kernel=False)(inputs_mel)
# Make Kapre Melspec
# model_pre = Model(inputs=inputs_mel, outputs=melspec)
# x_mel = model_pre.predict(voc[np.newaxis,:], batch_size=x.shape[0], verbose=1)
# # Print shape help
print('Batch size: {}'.format(batch_size))
print('x specto / input shape: {}'.format(x.shape))
# print('x mel shape / input shape: {}'.format(x_mel.shape))
# # Export Kapre mel and wav
# x_mel_temp = x_mel[:,:,:,0]
# nd_array_to_txt(filename='kapre_mel', data=x_mel_temp)
# plot_spect(x_mel_temp, name='spectogram-kapre-before' + str(i) + '.png')
# mel_wav = to_wav_from_spec(x_mel_temp)
# librosa.output.write_wav(path='out_mel.wav', y=mel_wav.T, sr=ModelConfig.SR, norm=True)
# # Make it 512 cols and rows
# #x_mel = x_mel[:,0:512,:,0]
##############
# Conform to unet shape
x = x[:, :, :, np.newaxis]
print(x.ndim)
print('X newaxis shape {}'.format(x.shape))
# Propagate Unet
input_shape = (x.shape[1], x.shape[2], 1)
inputs = Input(input_shape)
outputs = unet(inputs=inputs)
model = Model(inputs=inputs, outputs=outputs)
y_hat = model.predict(x, batch_size=batch_size, verbose=1)
# Print output shapes
print('y_hat shape {}'.format(y_hat.shape))
print('len yhat {}'.format(len(y_hat)))
# get rid of weird unet shape
y_hat = y_hat[:,:,:,0]
# Export Spectogram images after model
for i in range(batch_size):
print('spectogram-after-unet_' + str(i) + '.png')
plot_spect(y_hat, name='spectogram-after-unet_' + str(i) + '.png')
# Convert from spectogram to wav
out_wav = to_wav(mag = y_hat, phase=x_phase[:,0:512,0:512])
# out_wav = to_wav_from_spec(y_hat[:,:,:,0])
# Export wav after model
librosa.output.write_wav(path='out_after_librosa.wav', y=out_wav.T, sr=ModelConfig.SR, norm=True)
write_wav(data = out_wav.T, path = 'out_after_writewavfunc')
# Print shapes
print('in wav shape {}'.format(voc.shape))
print('out_wav shape {}'.format(out_wav.shape))
# print(nwins)
# print(music.shape)
# x = Melspectrogram(
# input_shape=(, 44100), # 1-sec stereo input
# n_dft=512, n_hop=256, n_mels=128, sr=sr,
# fmin=0.0, fmax=sr/2, return_decibel=False,
# trainable_fb=False, trainable_kernel=False)(music)
# Normalization2D(str_axis=’freq’)
# AdditiveNoise(power=0.2)
# and more layers for model hereafter
# for some reason we need this for Melspecto to work ...
# testshape = to_spectrogram(mix)
# input_shape = mix.shape
# x = voc[np.newaxis, :]
# batch_size = x.shape[0]
# inputs_specto = Input(input_shape)
# output shape of melspec will be nbins / n_hop
# we want it to be 512, 512
# melspec = Melspectrogram(
# input_shape=(input_shape),
# n_dft = ModelConfig.L_FRAME,
# n_hop = ModelConfig.L_HOP,
# n_mels= ModelConfig.N_MELS,
# sr = ModelConfig.SR,
# fmin = ModelConfig.F_MIN,
# fmax = ModelConfig.SR / 2,
# trainable_fb=False,
# trainable_kernel=False)(inputs_specto)
# specto = Spectrogram(
# n_dft=ModelConfig.L_FRAME,
# n_hop=ModelConfig.L_HOP,
# input_shape=input_shape,
# return_decibel_spectrogram=True,
# power_spectrogram=2.0,
# trainable_kernel=False,
# name='static_stft')(inputs_specto)