forked from leokwu/livenessnet
-
Notifications
You must be signed in to change notification settings - Fork 2
/
gather_examples.py
91 lines (77 loc) · 3.03 KB
/
gather_examples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# USAGE
# python3.6 gather_examples.py --input videos/real.mov --output dataset/real --detector face_detector --skip 1
# python3.6 gather_examples.py --input videos/fake.mp4 --output dataset/fake --detector face_detector --skip 4
# import the necessary packages
import numpy as np
import argparse
import cv2
import os
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--input", type=str, required=True,
help="path to input video")
ap.add_argument("-o", "--output", type=str, required=True,
help="path to output directory of cropped faces")
ap.add_argument("-d", "--detector", type=str, required=True,
help="path to OpenCV's deep learning face detector")
ap.add_argument("-c", "--confidence", type=float, default=0.5,
help="minimum probability to filter weak detections")
ap.add_argument("-s", "--skip", type=int, default=16,
help="# of frames to skip before applying face detection")
args = vars(ap.parse_args())
# load our serialized face detector from disk
print("[INFO] loading face detector...")
protoPath = os.path.sep.join([args["detector"], "deploy.prototxt"])
modelPath = os.path.sep.join([args["detector"],
"res10_300x300_ssd_iter_140000.caffemodel"])
net = cv2.dnn.readNetFromCaffe(protoPath, modelPath)
# open a pointer to the video file stream and initialize the total
# number of frames read and saved thus far
vs = cv2.VideoCapture(args["input"])
read = 0
saved = 0
# loop over frames from the video file stream
while True:
# grab the frame from the file
(grabbed, frame) = vs.read()
# if the frame was not grabbed, then we have reached the end
# of the stream
if not grabbed:
break
# increment the total number of frames read thus far
read += 1
# check to see if we should process this frame
if read % args["skip"] != 0:
continue
# grab the frame dimensions and construct a blob from the frame
(h, w) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0,
(300, 300), (104.0, 177.0, 123.0))
# pass the blob through the network and obtain the detections and
# predictions
net.setInput(blob)
detections = net.forward()
# ensure at least one face was found
if len(detections) > 0:
# we're making the assumption that each image has only ONE
# face, so find the bounding box with the largest probability
i = np.argmax(detections[0, 0, :, 2])
confidence = detections[0, 0, i, 2]
# ensure that the detection with the largest probability also
# means our minimum probability test (thus helping filter out
# weak detections)
if confidence > args["confidence"]:
# compute the (x, y)-coordinates of the bounding box for
# the face and extract the face ROI
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
face = frame[startY:endY, startX:endX]
# write the frame to disk
p = os.path.sep.join([args["output"],
"{}.png".format(saved)])
cv2.imwrite(p, face)
saved += 1
print("[INFO] saved {} to disk".format(p))
# do a bit of cleanup
vs.release()
cv2.destroyAllWindows()