-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtrain_oneside.py
80 lines (71 loc) · 2.79 KB
/
train_oneside.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import os
import csv
import time
import math
import pandas as pd
import torch
import torch.nn as nn
import torchvision.utils as vutils
from torch.optim.sgd import SGD
from torch.utils.data import DataLoader
from optims import OCGD, BCGD2
from train_utils import get_data, weights_init_d, weights_init_g, \
get_diff, save_checkpoint, lr_scheduler, generate_data, icrScheduler, get_model
from losses import get_loss
# seed = torch.randint(0, 1000000, (1,))
seed = 2020
torch.manual_seed(seed=seed)
print('random seed : %d' % seed)
def train_ocgd(epoch_num=10, optim_type='BCGD2',
startPoint=None, logdir='test',
update_min=True,
z_dim=128, batchsize=64,
loss_name='WGAN', model_name='dc',
data_path='None', dataname='cifar10',
device='cpu', gpu_num=1, collect_info=False):
lr_d = 0.01
lr_g = 0.01
dataset = get_data(dataname=dataname, path='../datas/%s' % data_path)
dataloader = DataLoader(dataset=dataset, batch_size=batchsize, shuffle=True,
num_workers=4)
D, G = get_model(model_name=model_name, z_dim=z_dim)
D.to(device)
G.to(device)
if startPoint is not None:
chk = torch.load(startPoint)
D.load_state_dict(chk['D'])
G.load_state_dict(chk['G'])
print('Start from %s' % startPoint)
optimizer = OCGD(max_params=G.parameters(), min_params=D.parameters(),
udpate_min=update_min, device=device)
loss_list = []
count = 0
for e in range(epoch_num):
for real_x in dataloader:
real_x = real_x[0].to(device)
d_real = D(real_x)
z = torch.randn((real_x.shape[0], z_dim), device=device)
fake_x = G(z)
d_fake = D(fake_x)
D_loss = get_loss(name=loss_name, g_loss=False, d_real=d_real, d_fake=d_fake)
optimizer.zero_grad()
optimizer.step(loss=D_loss)
if count % 100 == 0:
print('Iter %d, Loss: %.5f' % (count, D_loss.item()))
loss_list.append(D_loss.item())
count += 1
print('epoch{%d/%d}' %(e, epoch_num))
name = 'overtrainD.pth' if update_min else 'overtrainG.pth'
save_checkpoint(path=logdir, name=name, D=D, G=G)
loss_data = pd.DataFrame(loss_list)
loss_data.to_csv('logs/train_oneside.csv')
if __name__ == '__main__':
torch.backends.cudnn.benchmark = True
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print(device)
chk = 'checkpoints/0.00000MNIST-0.0100/SGD-0.01000_9000.pth'
train_ocgd(epoch_num=10, startPoint=chk,
z_dim=96, update_min=True,
data_path='mnist', dataname='MNIST',
loss_name='JSD', model_name='mnist',
batchsize=128, device=device)