-
Notifications
You must be signed in to change notification settings - Fork 7
/
TDigestTest.cpp
262 lines (225 loc) · 7.46 KB
/
TDigestTest.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
/*
* Licensed to Derrick R. Burns under one or more
* contributor license agreements. See the NOTICES file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "glog/logging.h"
#include "gtest/gtest.h"
#include "tdigest2/TDigest.h"
namespace stesting {
class TDigestTest : public ::testing::Test {
protected:
// You can remove any or all of the following functions if its body
// is empty.
TDigestTest() {
// You can do set-up work for each test here.
}
virtual ~TDigestTest() {
// You can do clean-up work that doesn't throw exceptions here.
}
// If the constructor and destructor are not enough for setting up
// and cleaning up each test, you can define the following methods:
virtual void SetUp() {
// Code here will be called immediately after the constructor (right
// before each test).
}
virtual void TearDown() {
// Code here will be called immediately after each test (right
// before the destructor).
}
static void SetUpTestCase() {
static bool initialized = false;
if (!initialized) {
FLAGS_logtostderr = true;
google::InstallFailureSignalHandler();
google::InitGoogleLogging("testing::TDigestTest");
initialized = true;
}
}
// Objects declared here can be used by all tests in the test case for Foo.
};
static double cdf(const double x, const std::vector<double>& data) {
int n1 = 0;
int n2 = 0;
for (auto v : data) {
n1 += (v < x) ? 1 : 0;
n2 += (v <= x) ? 1 : 0;
}
return (n1 + n2) / 2.0 / data.size();
}
static double quantile(const double q, const std::vector<double>& values) {
double q1;
if (values.size() == 0) {
q1 = NAN;
} else if (q == 1 || values.size() == 1) {
q1 = values[values.size() - 1];
} else {
auto index = q * values.size();
if (index < 0.5) {
q1 = values[0];
} else if (values.size() - index < 0.5) {
q1 = values[values.size() - 1];
} else {
index -= 0.5;
const int intIndex = static_cast<int>(index);
q1 = values[intIndex + 1] * (index - intIndex) + values[intIndex] * (intIndex + 1 - index);
}
}
return q1;
}
TEST_F(TDigestTest, CrashAfterMerge) {
tdigest::TDigest digest(1000);
std::uniform_real_distribution<> reals(0.0, 1.0);
std::random_device gen;
for (int i = 0; i < 100000; i++) {
digest.add(reals(gen));
}
digest.compress();
tdigest::TDigest digest2(1000);
digest2.merge(&digest);
digest2.quantile(0.5);
}
TEST_F(TDigestTest, EmptyDigest) {
tdigest::TDigest digest(100);
EXPECT_EQ(0, digest.processed().size());
}
TEST_F(TDigestTest, SingleValue) {
tdigest::TDigest digest(100);
std::random_device gen;
std::uniform_real_distribution<> dist(0, 1000);
const auto value = dist(gen);
digest.add(value);
std::uniform_real_distribution<> dist2(0, 1.0);
const double q = dist2(gen);
EXPECT_NEAR(value, digest.quantile(0.0), 0.001f);
EXPECT_NEAR(value, digest.quantile(q), 0.001f);
EXPECT_NEAR(value, digest.quantile(1.0), 0.001f);
}
TEST_F(TDigestTest, FewValues) {
// When there are few values in the tree, quantiles should be exact
tdigest::TDigest digest(1000);
std::random_device gen;
std::uniform_real_distribution<> reals(0.0, 100.0);
std::uniform_int_distribution<> dist(0, 10);
std::uniform_int_distribution<> bools(0, 1);
std::uniform_real_distribution<> qvalue(0.0, 1.0);
const auto length = 10;//dist(gen);
std::vector<double> values;
values.reserve(length);
for (int i = 0; i < length; ++i) {
auto const value = (i == 0 || bools(gen)) ? reals(gen) : values[i - 1];
digest.add(value);
values.push_back(value);
}
std::sort(values.begin(), values.end());
digest.compress();
EXPECT_EQ(digest.processed().size(), values.size());
std::vector<double> testValues{0.0, 1.0e-10, qvalue(gen), 0.5, 1.0 - 1e-10, 1.0};
for (auto q : testValues) {
double q1 = quantile(q, values);
auto q2 = digest.quantile(q);
if (std::isnan(q1)) {
EXPECT_TRUE(std::isnan(q2));
} else {
EXPECT_NEAR(q1, q2, 0.03) << "q = " << q;
}
}
}
TEST_F(TDigestTest, MoreThan2BValues) {
tdigest::TDigest digest(1000);
std::random_device gen;
std::uniform_real_distribution<> reals(0.0, 1.0);
for (int i = 0; i < 1000; ++i) {
const double next = reals(gen);
digest.add(next);
}
for (int i = 0; i < 10; ++i) {
const double next = reals(gen);
const auto count = 1L << 28;
digest.add(next, count);
}
EXPECT_EQ(1000 + 10L * (1 << 28), digest.totalWeight());
EXPECT_GT(digest.totalWeight(), std::numeric_limits<int32_t>::max());
std::vector<double> quantiles{0, 0.1, 0.5, 0.9, 1, reals(gen)};
std::sort(quantiles.begin(), quantiles.end());
auto prev = std::numeric_limits<double>::min();
for (double q : quantiles) {
const double v = digest.quantile(q);
EXPECT_GE(v, prev) << "q = " << q;
prev = v;
}
}
TEST_F(TDigestTest, MergeTest) {
tdigest::TDigest digest1(1000);
tdigest::TDigest digest2(1000);
digest2.add(std::vector<const tdigest::TDigest *> {&digest1});
}
TEST_F(TDigestTest, TestSorted) {
tdigest::TDigest digest(1000);
std::uniform_real_distribution<> reals(0.0, 1.0);
std::uniform_int_distribution<> ints(0, 10);
std::random_device gen;
for (int i = 0; i < 10000; ++i) {
digest.add(reals(gen), 1 + ints(gen));
}
digest.compress();
tdigest::Centroid previous(0, 0);
for (auto centroid : digest.processed()) {
if (previous.weight() != 0) {
CHECK_LE(previous.mean(), centroid.mean());
}
previous = centroid;
}
}
TEST_F(TDigestTest, ExtremeQuantiles) {
tdigest::TDigest digest(1000);
// t-digest shouldn't merge extreme nodes, but let's still test how it would
// answer to extreme quantiles in that case ('extreme' in the sense that the
// quantile is either before the first node or after the last one)
digest.add(10, 3);
digest.add(20, 1);
digest.add(40, 5);
// this group tree is roughly equivalent to the following sorted array:
// [ ?, 10, ?, 20, ?, ?, 50, ?, ? ]
// and we expect it to compute approximate missing values:
// [ 5, 10, 15, 20, 30, 40, 50, 60, 70]
std::vector<double> values{5.0, 10.0, 15.0, 20.0, 30.0, 35.0, 40.0, 45.0, 50.0};
std::vector<double> quantiles{1.5 / 9.0, 3.5 / 9.0, 6.5 / 9.0};
for (auto q : quantiles) {
EXPECT_NEAR(quantile(q, values), digest.quantile(q), 0.01) << "q = " << q;
}
}
TEST_F(TDigestTest, Montonicity) {
tdigest::TDigest digest(1000);
std::uniform_real_distribution<> reals(0.0, 1.0);
std::random_device gen;
for (int i = 0; i < 100000; i++) {
digest.add(reals(gen));
}
double lastQuantile = -1;
double lastX = -1;
for (double z = 0; z <= 1; z += 1e-5) {
double x = digest.quantile(z);
EXPECT_GE(x, lastX);
lastX = x;
double q = digest.cdf(z);
EXPECT_GE(q, lastQuantile);
lastQuantile = q;
}
}
} // namespace stesting
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}