-
Notifications
You must be signed in to change notification settings - Fork 0
/
yolo_object_detection.py
100 lines (83 loc) · 3.17 KB
/
yolo_object_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import cv2
import numpy as np
import glob
import random
from windowcapture import WindowCapture
import time
# Load Yolo
net = cv2.dnn.readNet("yolov3_custom_last.weights", "yolov3_custom.cfg")
#Uncomment if want to use GPU NVIDIA
#net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
#net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
# Name custom object
classes = ["sign_green", "sign_red", "sign_yellow"]
# Images path
capturePath = WindowCapture("Grand Theft Auto V")
#capturePath = WindowCapture("Nova guia - Brave")
# while True:
# capturePath.get_screenshot()
# print(capturePath.w, capturePath.h)
layer_names = net.getLayerNames()
output_layers = [layer_names[i - 1] for i in net.getUnconnectedOutLayers()]
colors = np.random.uniform(0, 255, size=(len(classes), 3))
startTime = 0
while(True):
# Insert here the path of your images
img = capturePath.get_screenshot()
currentTime = time.time()
fps = 1/(currentTime - startTime)
startTime = currentTime
# Loading image
height, width, channels = img.shape
# Detecting objects
blob = cv2.dnn.blobFromImage(img, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(output_layers)
# Showing informations on the screen
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.3:
# Object detected
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
# Rectangle coordinates
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
font = cv2.FONT_HERSHEY_PLAIN
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
color = colors[class_ids[i]]
if label == "sign_red":
cv2.rectangle(img, (x, y), (x + w, y + h), (0,0,255), 2)
elif label == "sign_green":
cv2.rectangle(img, (x, y), (x + w, y + h), (0,255,0), 2)
else:
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 255), 2)
# if label == "sign_red":
# cv2.putText(img, '', (x-30, y - 3), font, 1.5, (255,255,255), 2)
# elif label == "sign_green":
# cv2.putText(img, '', (x-30, y - 3), font, 1.5, (34,139,34), 2)
# else:
# cv2.putText(img, '', (x-30, y - 3), font, 1.5, (255, 117, 24), 2)
print(fps)
cv2.putText(img, "FPS: " + str(int(fps)), (20,70), cv2.FONT_HERSHEY_PLAIN, 2, (0, 255, 0), 2)
cv2.imshow("Image", img)
key = cv2.waitKey(1)
if key == ord('q'):
cv2.destroyAllWindows()
break
cv2.destroyAllWindows()