Table of Contents
pip install fastembed-haystack
You can use FastembedTextEmbedder
and FastembedDocumentEmbedder
by importing as:
from haystack_integrations.components.embedders.fastembed import FastembedTextEmbedder
text = "fastembed is supported by and maintained by Qdrant."
text_embedder = FastembedTextEmbedder(
model="BAAI/bge-small-en-v1.5"
)
text_embedder.warm_up()
embedding = text_embedder.run(text)["embedding"]
from haystack_integrations.components.embedders.fastembed import FastembedDocumentEmbedder
from haystack import Document
embedder = FastembedDocumentEmbedder(
model="BAAI/bge-small-en-v1.5",
)
embedder.warm_up()
doc = Document(content="fastembed is supported by and maintained by Qdrant.", meta={"long_answer": "no",})
result = embedder.run(documents=[doc])
You can use FastembedSparseTextEmbedder
and FastembedSparseDocumentEmbedder
by importing as:
from haystack_integrations.components.embedders.fastembed import FastembedSparseTextEmbedder
text = "fastembed is supported by and maintained by Qdrant."
text_embedder = FastembedSparseTextEmbedder(
model="prithivida/Splade_PP_en_v1"
)
text_embedder.warm_up()
embedding = text_embedder.run(text)["sparse_embedding"]
from haystack_integrations.components.embedders.fastembed import FastembedSparseDocumentEmbedder
from haystack import Document
embedder = FastembedSparseDocumentEmbedder(
model="prithivida/Splade_PP_en_v1",
)
embedder.warm_up()
doc = Document(content="fastembed is supported by and maintained by Qdrant.", meta={"long_answer": "no",})
result = embedder.run(documents=[doc])
You can use FastembedRanker
by importing as:
from haystack import Document
from haystack_integrations.components.rankers.fastembed import FastembedRanker
query = "Who is maintaining Qdrant?"
documents = [
Document(
content="This is built to be faster and lighter than other embedding libraries e.g. Transformers, Sentence-Transformers, etc."
),
Document(content="fastembed is supported by and maintained by Qdrant."),
]
ranker = FastembedRanker(model_name="Xenova/ms-marco-MiniLM-L-6-v2")
ranker.warm_up()
reranked_documents = ranker.run(query=query, documents=documents)["documents"]
print(reranked_documents[0])
# Document(id=...,
# content: 'fastembed is supported by and maintained by Qdrant.',
# score: 5.472434997558594..)
fastembed-haystack
is distributed under the terms of the Apache-2.0 license.