-
Notifications
You must be signed in to change notification settings - Fork 115
/
Copy pathloop.py
266 lines (230 loc) · 10.3 KB
/
loop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
"""
Agentic sampling loop that calls the Anthropic API and local implementation of anthropic-defined computer use tools.
"""
import platform
from collections.abc import Callable
from datetime import datetime
from enum import StrEnum
from typing import Any, cast
from anthropic import Anthropic, AnthropicBedrock, AnthropicVertex, APIResponse
from anthropic.types import (
ToolResultBlockParam,
)
from anthropic.types.beta import (
BetaContentBlock,
BetaContentBlockParam,
BetaImageBlockParam,
BetaMessage,
BetaMessageParam,
BetaTextBlockParam,
BetaToolResultBlockParam,
)
from tools import BashTool, ComputerTool, EditTool, ToolCollection, ToolResult
BETA_FLAG = "computer-use-2024-10-22"
class APIProvider(StrEnum):
ANTHROPIC = "anthropic"
BEDROCK = "bedrock"
VERTEX = "vertex"
PROVIDER_TO_DEFAULT_MODEL_NAME: dict[APIProvider, str] = {
APIProvider.ANTHROPIC: "claude-3-5-sonnet-20241022",
APIProvider.BEDROCK: "anthropic.claude-3-5-sonnet-20241022-v2:0",
APIProvider.VERTEX: "claude-3-5-sonnet-v2@20241022",
}
# This system prompt is optimized for the Docker environment in this repository and
# specific tool combinations enabled.
# We encourage modifying this system prompt to ensure the model has context for the
# environment it is running in, and to provide any additional information that may be
# helpful for the task at hand.
# SYSTEM_PROMPT = f"""<SYSTEM_CAPABILITY>
# * You are utilizing a macOS Sonoma 15.7 environment using {platform.machine()} architecture with internet access.
# * You can install applications using homebrew with your bash tool. Use curl instead of wget.
# * To open Chrome, please just click on the Chrome icon in the Dock or use Spotlight.
# * Using bash tool you can start GUI applications. GUI apps can be launched directly or with `open -a "Application Name"`. GUI apps will appear natively within macOS, but they may take some time to appear. Take a screenshot to confirm it did.
# * When using your bash tool with commands that are expected to output very large quantities of text, redirect into a tmp file and use str_replace_editor or `grep -n -B <lines before> -A <lines after> <query> <filename>` to confirm output.
# * When viewing a page it can be helpful to zoom out so that you can see everything on the page. In Chrome, use Command + "-" to zoom out or Command + "+" to zoom in.
# * When using your computer function calls, they take a while to run and send back to you. Where possible/feasible, try to chain multiple of these calls all into one function calls request.
# * The current date is {datetime.today().strftime('%A, %B %-d, %Y')}.
# </SYSTEM_CAPABILITY>
# <IMPORTANT>
# * When using Chrome, if any first-time setup dialogs appear, IGNORE THEM. Instead, click directly in the address bar and enter the appropriate search term or URL there.
# * If the item you are looking at is a pdf, if after taking a single screenshot of the pdf it seems that you want to read the entire document instead of trying to continue to read the pdf from your screenshots + navigation, determine the URL, use curl to download the pdf, install and use pdftotext (available via homebrew) to convert it to a text file, and then read that text file directly with your StrReplaceEditTool.
# </IMPORTANT>"""
SYSTEM_PROMPT = f"""<SYSTEM_CAPABILITY>
* You are utilizing a macOS Sonoma 15.7 environment using {platform.machine()} architecture with command line internet access.
* Package management:
- Use homebrew for package installation
- Use curl for HTTP requests
- Use npm/yarn for Node.js packages
- Use pip for Python packages
* Browser automation available via Playwright:
- Supports Chrome, Firefox, and WebKit
- Can handle JavaScript-heavy applications
- Capable of screenshots, navigation, and interaction
- Handles dynamic content loading
* System automation:
- cliclick for simulating mouse/keyboard input
- osascript for AppleScript commands
- launchctl for managing services
- defaults for reading/writing system preferences
* Development tools:
- Standard Unix/Linux command line utilities
- Git for version control
- Docker for containerization
- Common build tools (make, cmake, etc.)
* Output handling:
- For large output, redirect to tmp files: command > /tmp/output.txt
- Use grep with context: grep -n -B <before> -A <after> <query> <filename>
- Stream processing with awk, sed, and other text utilities
* Note: Command line function calls may have latency. Chain multiple operations into single requests where feasible.
* The current date is {datetime.today().strftime('%A, %B %-d, %Y')}.
</SYSTEM_CAPABILITY>"""
async def sampling_loop(
*,
model: str,
provider: APIProvider,
system_prompt_suffix: str,
messages: list[BetaMessageParam],
output_callback: Callable[[BetaContentBlock], None],
tool_output_callback: Callable[[ToolResult, str], None],
api_response_callback: Callable[[APIResponse[BetaMessage]], None],
api_key: str,
only_n_most_recent_images: int | None = None,
max_tokens: int = 4096,
):
"""
Agentic sampling loop for the assistant/tool interaction of computer use.
"""
tool_collection = ToolCollection(
ComputerTool(),
BashTool(),
EditTool(),
)
system = (
f"{SYSTEM_PROMPT}{' ' + system_prompt_suffix if system_prompt_suffix else ''}"
)
while True:
if only_n_most_recent_images:
_maybe_filter_to_n_most_recent_images(messages, only_n_most_recent_images)
if provider == APIProvider.ANTHROPIC:
client = Anthropic(api_key=api_key)
elif provider == APIProvider.VERTEX:
client = AnthropicVertex()
elif provider == APIProvider.BEDROCK:
client = AnthropicBedrock()
# Call the API
# we use raw_response to provide debug information to streamlit. Your
# implementation may be able call the SDK directly with:
# `response = client.messages.create(...)` instead.
raw_response = client.beta.messages.with_raw_response.create(
max_tokens=max_tokens,
messages=messages,
model=model,
system=system,
tools=tool_collection.to_params(),
betas=[BETA_FLAG],
)
api_response_callback(cast(APIResponse[BetaMessage], raw_response))
response = raw_response.parse()
messages.append(
{
"role": "assistant",
"content": cast(list[BetaContentBlockParam], response.content),
}
)
tool_result_content: list[BetaToolResultBlockParam] = []
for content_block in cast(list[BetaContentBlock], response.content):
print("CONTENT", content_block)
output_callback(content_block)
if content_block.type == "tool_use":
result = await tool_collection.run(
name=content_block.name,
tool_input=cast(dict[str, Any], content_block.input),
)
tool_result_content.append(
_make_api_tool_result(result, content_block.id)
)
tool_output_callback(result, content_block.id)
if not tool_result_content:
return messages
messages.append({"content": tool_result_content, "role": "user"})
def _maybe_filter_to_n_most_recent_images(
messages: list[BetaMessageParam],
images_to_keep: int,
min_removal_threshold: int = 10,
):
"""
With the assumption that images are screenshots that are of diminishing value as
the conversation progresses, remove all but the final `images_to_keep` tool_result
images in place, with a chunk of min_removal_threshold to reduce the amount we
break the implicit prompt cache.
"""
if images_to_keep is None:
return messages
tool_result_blocks = cast(
list[ToolResultBlockParam],
[
item
for message in messages
for item in (
message["content"] if isinstance(message["content"], list) else []
)
if isinstance(item, dict) and item.get("type") == "tool_result"
],
)
total_images = sum(
1
for tool_result in tool_result_blocks
for content in tool_result.get("content", [])
if isinstance(content, dict) and content.get("type") == "image"
)
images_to_remove = total_images - images_to_keep
# for better cache behavior, we want to remove in chunks
images_to_remove -= images_to_remove % min_removal_threshold
for tool_result in tool_result_blocks:
if isinstance(tool_result.get("content"), list):
new_content = []
for content in tool_result.get("content", []):
if isinstance(content, dict) and content.get("type") == "image":
if images_to_remove > 0:
images_to_remove -= 1
continue
new_content.append(content)
tool_result["content"] = new_content
def _make_api_tool_result(
result: ToolResult, tool_use_id: str
) -> BetaToolResultBlockParam:
"""Convert an agent ToolResult to an API ToolResultBlockParam."""
tool_result_content: list[BetaTextBlockParam | BetaImageBlockParam] | str = []
is_error = False
if result.error:
is_error = True
tool_result_content = _maybe_prepend_system_tool_result(result, result.error)
else:
if result.output:
tool_result_content.append(
{
"type": "text",
"text": _maybe_prepend_system_tool_result(result, result.output),
}
)
if result.base64_image:
tool_result_content.append(
{
"type": "image",
"source": {
"type": "base64",
"media_type": "image/png",
"data": result.base64_image,
},
}
)
return {
"type": "tool_result",
"content": tool_result_content,
"tool_use_id": tool_use_id,
"is_error": is_error,
}
def _maybe_prepend_system_tool_result(result: ToolResult, result_text: str):
if result.system:
result_text = f"<system>{result.system}</system>\n{result_text}"
return result_text