-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtf2pytorch.py
122 lines (102 loc) · 4.05 KB
/
tf2pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
from typing import Dict
import numpy as np
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import tensorflow as tf
def parse_int_or_default(s: str, default: int = 0) -> int:
try:
return int(s)
except:
return default
def tf2pytorch(checkpoint_path: str) -> Dict:
init_vars = tf.train.list_variables(checkpoint_path)
tf_vars = {}
for name, _ in init_vars:
try:
# print('Loading TF Weight {} with shape {}'.format(name, shape))
data = tf.train.load_variable(checkpoint_path, name)
tf_vars[name] = data
except Exception as e:
print(f"Load error: {name}")
raise
layer_idxs = set(
[
parse_int_or_default(name.split("/")[0].split("_")[-1], default=0)
for name in tf_vars.keys()
if "conv2d_transpose" in name
]
)
n_layers_per_unet = 6
n_layers_in_chkpt = max(layer_idxs) + 1
assert (
n_layers_in_chkpt % 6 == 0
), f"expected multiple of {n_layers_per_unet}... ie: {n_layers_per_unet} layers per unet & 1 unet per stem"
n_stems = n_layers_in_chkpt // n_layers_per_unet
stem_names = {
2: ["vocals", "accompaniment"],
4: ["vocals", "drums", "bass", "other"],
5: ["vocals", "piano", "drums", "bass", "other"],
}.get(n_stems, [])
assert stem_names, f"Unsupported stem count: {n_stems}"
state_dict = {}
tf_idx_conv = 0
tf_idx_tconv = 0
tf_idx_bn = 0
for stem_name in stem_names:
# Encoder Blocks (Down sampling)
for layer_idx in range(n_layers_per_unet):
prefix = f"stems.{stem_name}.encoder_layers.{layer_idx}"
conv_suffix = "" if tf_idx_conv == 0 else f"_{tf_idx_conv}"
bn_suffix = "" if tf_idx_bn == 0 else f"_{tf_idx_bn}"
state_dict[f"{prefix}.conv.weight"] = np.transpose(
tf_vars[f"conv2d{conv_suffix}/kernel"], (3, 2, 0, 1)
)
state_dict[f"{prefix}.conv.bias"] = tf_vars[f"conv2d{conv_suffix}/bias"]
tf_idx_conv += 1
state_dict[f"{prefix}.bn.weight"] = tf_vars[
f"batch_normalization{bn_suffix}/gamma"
]
state_dict[f"{prefix}.bn.bias"] = tf_vars[
f"batch_normalization{bn_suffix}/beta"
]
state_dict[f"{prefix}.bn.running_mean"] = tf_vars[
f"batch_normalization{bn_suffix}/moving_mean"
]
state_dict[f"{prefix}.bn.running_var"] = tf_vars[
f"batch_normalization{bn_suffix}/moving_variance"
]
tf_idx_bn += 1
# Decoder Blocks (Up sampling)
for layer_idx in range(n_layers_per_unet):
prefix = f"stems.{stem_name}.decoder_layers.{layer_idx}"
tconv_suffix = "" if tf_idx_tconv == 0 else f"_{tf_idx_tconv}"
bn_suffix = f"_{tf_idx_bn}"
state_dict[f"{prefix}.tconv.weight"] = np.transpose(
tf_vars[f"conv2d_transpose{tconv_suffix}/kernel"], (3, 2, 0, 1)
)
state_dict[f"{prefix}.tconv.bias"] = tf_vars[
f"conv2d_transpose{tconv_suffix}/bias"
]
tf_idx_tconv += 1
state_dict[f"{prefix}.bn.weight"] = tf_vars[
f"batch_normalization{bn_suffix}/gamma"
]
state_dict[f"{prefix}.bn.bias"] = tf_vars[
f"batch_normalization{bn_suffix}/beta"
]
state_dict[f"{prefix}.bn.running_mean"] = tf_vars[
f"batch_normalization{bn_suffix}/moving_mean"
]
state_dict[f"{prefix}.bn.running_var"] = tf_vars[
f"batch_normalization{bn_suffix}/moving_variance"
]
tf_idx_bn += 1
# Final conv2d
state_dict[f"stems.{stem_name}.up_final.weight"] = np.transpose(
tf_vars[f"conv2d_{tf_idx_conv}/kernel"], (3, 2, 0, 1)
)
state_dict[f"stems.{stem_name}.up_final.bias"] = tf_vars[
f"conv2d_{tf_idx_conv}/bias"
]
tf_idx_conv += 1
return state_dict