-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
119 lines (106 loc) · 4.86 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# app.py: Entry point of the mlu application.
import numpy as np
import pandas as pd
from modules.data_transformation import handle_missing_values, normalize, encode_categorical
from modules.array_manipulation import filter, aggregate, summary
from modules.chain import Chain
from modules.ethical_ai_utils import bias_detection, fairness_metrics
from modules.anomaly_detection_utils import isolation_forest, local_outlier_factor
from modules.reinforcement_learning_utils import Environment, train_model
def demonstrate_data_transformation():
try:
print("\n--- Data Transformation Examples ---")
data = np.array([1, 2, np.nan, 4, 5])
print("Original data:", data)
data = handle_missing_values(data)
print("After handling missing values (mean):", data)
data = normalize(data)
print("After normalization:", data)
except Exception as e:
print(f"An error occurred during data transformation demonstration: {e}")
def demonstrate_array_manipulation():
try:
print("\n--- Array Manipulation Examples ---")
array = np.array([1, -2, 3, -4, 5])
print("Original array:", array)
filtered_array = filter(array, lambda x: x > 0)
print("After filtering (positive values):", filtered_array)
aggregate_sum = aggregate(array, 'sum')
print("Aggregation (sum):", aggregate_sum)
summary_result = summary(array)
print("Summary:")
for key, value in summary_result.items():
print(f"{key}: {value}")
except Exception as e:
print(f"An error occurred during array manipulation demonstration: {e}")
def demonstrate_chaining():
try:
print("\n--- Chaining Mechanism Example ---")
data = np.array([-2, -1, 0, 1, 2])
print("Original data:", data)
result = Chain(data).filter(lambda x: x > 0).map(lambda x: x * 2).summary().value()
print("Chained operations result:", result)
except Exception as e:
print(f"An error occurred during chaining demonstration: {e}")
def demonstrate_ethical_ai():
try:
print("\n--- Ethical AI Demonstration ---")
data = pd.DataFrame({'Age': [23, 25, 46, 30, 22], 'Income': [50000, 60000, 80000, 120000, 45000], 'Gender': [1, 0, 1, 0, 1]})
target = 'Gender'
print("Bias Detection Report:")
print(bias_detection(data, target))
predictions = np.array([1, 0, 1, 0, 1])
ground_truth = np.array([1, 1, 0, 0, 1])
groups = np.array([0, 1, 0, 1, 0])
print("Fairness Metrics:")
fairness_report = fairness_metrics(predictions, ground_truth, groups)
for metric, value in fairness_report.items():
print(f"{metric}: {value}")
except Exception as e:
print(f"An error occurred during Ethical AI demonstration: {e}")
def demonstrate_reinforcement_learning():
try:
print("\n--- Reinforcement Learning Demonstration ---")
class SimpleEnvironment(Environment):
def _get_initial_state(self):
return np.random.rand(4) # Example state
def _apply_action(self, action):
newState = np.random.rand(4) # Example new state
reward = np.random.rand() # Example reward
is_done = np.random.choice([True, False]) # Example termination condition
return newState, reward, is_done
class SimpleModel:
def predict(self, state):
return np.random.choice([0, 1]) # Example action
def update(self, state, action, reward, newState, done):
pass # Placeholder for model update logic
environment = SimpleEnvironment()
model = SimpleModel()
train_model(environment, model, episodes=5)
except Exception as e:
print(f"An error occurred during Reinforcement Learning demonstration: {e}")
def demonstrate_anomaly_detection():
try:
print("\n--- Anomaly Detection Demonstration ---")
data = [[-1.1], [0.2], [101.1], [0.3], [0.5], [-100.1], [0.4], [0.6]]
print("Isolation Forest Anomalies:")
isolation_indices = isolation_forest(data)
print(f"Anomalies Indices: {isolation_indices}")
print("Local Outlier Factor Anomalies:")
lof_indices = local_outlier_factor(data)
print(f"Anomalies Indices: {lof_indices}")
except Exception as e:
print(f"An error occurred during Anomaly Detection demonstration: {e}")
def main():
try:
print("Welcome to the mlu application.")
demonstrate_data_transformation()
demonstrate_array_manipulation()
demonstrate_chaining()
demonstrate_ethical_ai()
demonstrate_reinforcement_learning()
demonstrate_anomaly_detection()
except Exception as e:
print(f"An error occurred in main: {e}")
if __name__ == "__main__":
main()