-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.R
631 lines (588 loc) · 21.4 KB
/
app.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
library(shiny)
library(SuppDists)
library(shinyWidgets)
library(ggplot2)
library(DT)
# p_X(x) = \frac{\delta}{\sqrt{2\pi((x-xi)^2 + lambda^2)}}exp[-0.5(\gamma + \delta ln(\frac{x-xi + \sqrt{(x-xi)^2 + lambda^2}}{lambda}))^2].
ui <- fluidPage(
titlePanel(h3("Distribution de Johnson")),
withMathJax(),
tags$div(HTML("<script type='text/x-mathjax-config' >
MathJax.Hub.Config({
tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}
});
</script >
")),
sidebarLayout(
sidebarPanel(
fluidRow(
column(
6,
switchInput(
inputId = "input_type",
label = "Entrée",
onLabel = "Curseur",
offLabel = "Numérique",
value = TRUE,
size = "mini"
)
),
column(3,
offset = 3,
actionBttn("reset_button",
"Réinit",
icon = icon("refresh"),
class = "btn-danger",
style = "bordered",
size = "xs",
color = "default"
)
)
),
conditionalPanel(
condition = "input.input_type == true",
sliderInput("gamma",
"$\\gamma$:",
min = -10,
max = 10,
step = 0.1,
value = 0
),
sliderInput("delta",
"$\\delta$:",
min = 0.1,
max = 20,
step = 0.1,
value = 1
),
sliderInput("xi",
"$\\xi$:",
min = -3,
max = 3,
step = 0.1,
value = 0
),
sliderInput("lambda",
"$\\lambda$",
min = 0.1,
max = 10,
step = 0.1,
value = 1
)
),
conditionalPanel(
condition = "input.input_type == false",
numericInput("gamma_num",
"$\\gamma$:",
min = -10,
max = 10,
step = 0.1,
value = 0,
width = 150
),
numericInput("delta_num",
"$\\delta$:",
min = 0.1,
max = 20,
step = 0.1,
value = 1,
width = 150
),
numericInput("xi_num",
"$\\xi$:",
min = -3,
max = 3,
step = 0.1,
value = 0,
width = 150
),
numericInput("lambda_num",
"$\\lambda$:",
min = 0.1,
max = 10,
step = 0.1,
value = 1,
width = 150
)
),
radioButtons("type",
"Type:",
choices = c("SN", "SL", "SU", "SB"),
selected = "SN",
inline = TRUE
),
switchInput(
inputId = "input_mode",
label = "Données",
onLabel = "Générées",
offLabel = "Chargées",
value = TRUE,
size = "mini"
),
conditionalPanel(
condition = "input.input_mode == true",
numericInput("num_observations",
"# Données à générer:",
value = 100,
min = 1,
max = 10000,
width = 150
),
fluidRow(
column(
6,
actionBttn(
inputId = "generate_button",
label = "Générer",
style = "unite",
color = "primary",
icon = icon("sliders"),
size = "sm"
)
),
column(
6,
downloadBttn(
outputId = "download_data",
label = "Télécharger",
style = "unite",
color = "default",
icon = icon("download"),
size = "sm"
)
)
)
),
conditionalPanel(
condition = "input.input_mode == false",
fileInput("file1", "Fichier:",
accept = c(
"text/csv",
"text/comma-separated-values,text/plain",
".csv"
)
),
DTOutput("fittedParams")
),
p(),
wellPanel(
style = "background: lightblue",
fluidRow(
column(
4,
a(h4("Par Daniel Coulombe, Ph.D.")),
p("2024")
),
column(
4,
tags$a(
href = "https://isteah.org",
tags$img(
src = "ISTEAH_LOGO.png",
title = "ISTEAH",
width = "160",
height = "140"
)
)
)
)
)
),
mainPanel(
tabsetPanel(
tabPanel(
strong(h4("Introduction")),
helpText(
"La distribution de Johnson est définie par 4 paramètres qui permettent de transformer une distribution normale standardisée en une distribution non-normale. ", br(),
"Essentiellement, elle permet de manipuler tant la symétrie que la voussure. Elle se présente sous 4 formes, définies à partir de l'équation suivante: ", p(),
"$$z=\\gamma+\\delta log f(u), \\; u=\\frac{x-\\xi}{\\lambda} $$",
h4("Selon la définition de $f(u)$, on obtient les formes suivantes: "), p(),
"SL [log normale]: $f(u)=u$", br(),
"SU [distribution non bordée]: $f(u)=u+\\sqrt{1+u^2}$", br(),
"SB [distribution non bordée]: $f(u)=u/(1-u)$", br(),
"SN [normale standardisée]: $f(u)=e^u$", p(),
"On pourra sélectionner le type de distribution dans le tableau de bord.", p(),
"Les paramètres de la distribution de Johnson sont les suivants:", p(),
"Gamma $\\gamma$: contrôle le degré d'asymétrie de la distribution. $-\\infty < \\gamma < \\infty$$", p(),
"Delta $\\delta$: contrôle le degré de voussure. $\\delta > 0$", p(),
"Xi $\\xi$: contrôle la location ou la position de la distribution sur l'axe horizontal. $-\\infty < \\xi < \\infty$", p(),
"Lambda $\\lambda$: contrôle l'échelle, ou la dispersion de la distribution. $\\lambda > 0$", p(),
p(),
"Type = SN produit des distributions symétriques et le paramètre $\\delta$ permettra de manipular la voussure.", p(),
"Type = SL produit des distributions asymétriques positives, contrôlées par le paramètre $\\delta$.", p(),
"Type = SU produit des distributions asymétriques négatives si $\\gamma$ est positif, et des distributions asymétriques positives dans le cas contraire. Le paramètre $\\delta$ contrôle l'importance de l'asymétrie. ", p(),
"Type = SB produit des distributions asymétriques positives si $\\gamma$ est positif, et des distributions asymétriques négatives dans le cas contraire. Le paramètre $\\delta$ contrôle l'importance de l'asymétrie. ", p(),
"L'application permet de varier indépendemment les quatres paramètres à l'aide de curseurs. Les graphiques affichés à la portion supérieure du panneau principal illustrent le résultat de ces manipulations. Le diagramme de probabilité normale permet d'examiner les écarts par rapport à une distribution normale.", p(),
"Une fois les paramètres traduisant une distribution désirée, on peut générer un échantillon de $n$ observations, que l'on peut sauvegarder. Un histogramme sur lequel on juxtappose une courbe de densité normale et une courbe de densité observée s'affiche, accompagné d'un diagramme de probabilités normales. ", p(),
"Finalement, les valeurs des paramètres de la distribution et les statistiques calculées sur les données générées à partir de cette dernière sont présentés sous forme d'un tableau."
),
p("La distribution de Johnson est une famille de distributions de probabilité continue qui est utilisée pour modéliser des données qui ne suivent pas les distributions classiques comme la normale, la lognormale, etc. Elle permet de modéliser une grande variété de formes de distribution en fonction de ses paramètres."),
h5("Fonction de densité de probabilité (PDF) :"),
p("La fonction de densité de probabilité (PDF) de la distribution de Johnson est définie par :"),
tags$p(HTML("$$f(x) = \\frac{\\gamma \\delta}{\\sqrt{2\\pi}} \\frac{1}{\\sigma(x)} \\phi(\\gamma + \\delta \\lambda(x))$$")),
p("où"),
tags$ul(
tags$li(HTML("<b>μ</b> est le paramètre de localisation qui déplace la distribution horizontalement.")),
tags$li(HTML("<b>σ</b> est le paramètre d'échelle qui règle la taille de la distribution.")),
tags$li(HTML("<b>γ</b> et <b>δ</b> sont les paramètres de forme qui déterminent la forme de la distribution.")),
tags$li(HTML("<b>λ</b> est une transformation qui peut être linéaire ou non linéaire, utilisée pour ajuster la distribution.")),
tags$li(HTML("<b>φ</b> est la fonction de densité de probabilité de la distribution normale standard.")),
tags$li(HTML("La notation <b>σ(x)</b> représente la fonction de dispersion, définie par <b>σ(x) = σ / √(1 + x²)</b>."))
),
h5("Références pour En Savoir Plus :"),
tags$ul(
tags$li("Wikipedia: ", tags$a("Distribution de Johnson", href = "https://en.wikipedia.org/wiki/Johnson%27s_SU_distribution")),
tags$li("Johnson, N. L. (1949). Systems of frequency curves generated by methods of translation. Biometrika, 36(1/2), 149-176."),
tags$li("Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous univariate distributions (Vol. 2). Wiley.")
),
p("Pour plus d'informations, veuillez consulter les références ci-dessus.")
),
tabPanel(
strong(h4("Simulation")),
fluidRow(
column(
width = 6,
plotOutput("distPlot")
),
column(
width = 6,
plotOutput("qqPlot")
)
),
fluidRow(
column(
width = 6,
conditionalPanel(
condition = "input.input_mode == true",
plotOutput("histPlot")
),
conditionalPanel(
condition = "input.input_mode == false",
plotOutput("histPlot_sample")
)
),
column(
width = 6,
conditionalPanel(
condition = "input.input_mode == true",
plotOutput("qqPlot_generated")
),
conditionalPanel(
condition = "input.input_mode == false",
plotOutput("qqPlot_sample")
)
)
),
DT::DTOutput("statsOutput")
)
)
)
)
)
server <- function(input, output, session) {
observeEvent(input$reset_button, {
updateSliderInput(session, "gamma", value = 0)
updateSliderInput(session, "delta", value = 1)
updateSliderInput(session, "xi", value = 0)
updateSliderInput(session, "lambda", value = 1)
updateNumericInput(session, "gamma_num", value = 0)
updateNumericInput(session, "delta_num", value = 1)
updateNumericInput(session, "xi_num", value = 0)
updateNumericInput(session, "lambda_num", value = 1)
updateSwitchInput(session, "input_type", value = TRUE)
updateSwitchInput(session, "input_mode", value = TRUE)
updateRadioButtons(session, "type", selected = "SN")
updateNumericInput(session, "num_observations", value = 100)
output$histPlot_sample <- renderPlot(NULL)
output$qqPlot_sample <- renderPlot(NULL)
output$qqPlot_generated <- renderPlot(NULL)
output$histPlot <- renderPlot(NULL)
output$statsOutput <- DT::renderDT(NULL)
output$fittedParams <- renderDT(NULL)
})
observe({
if (input$input_mode) {
output$data <- reactive({
generate_observations()
})
} else {
output$data <- reactive({
req(input$file1)
data <- read.csv(input$file1$datapath)
if (!"x" %in% names(data) || !is.numeric(data$x)) {
showNotification("Le fichier doit contenir une variable numérique nommée 'x'.", type = "error")
return(NULL)
}
return(data$x)
})
}
})
parms <- reactive({
if (input$input_type) {
list(
gamma = input$gamma,
delta = input$delta,
xi = input$xi,
lambda = input$lambda,
type = input$type
)
} else {
list(
gamma = input$gamma_num,
delta = input$delta_num,
xi = input$xi_num,
lambda = input$lambda_num,
type = input$type
)
}
})
generate_observations <- eventReactive(input$generate_button, {
params <- parms()
observations <- rJohnson(input$num_observations, parms = params)
return(observations)
})
observeEvent(input$file1, {
req(input$file1)
data <- read.csv(input$file1$datapath)
if (!"x" %in% names(data) || !is.numeric(data$x)) {
showNotification("Le fichier doit contenir une variable numérique nommée 'x'.", type = "error")
return(NULL)
}
fit <- JohnsonFit(data$x, moment = "quant")
updateSliderInput(session, "gamma", value = fit$gamma)
updateSliderInput(session, "delta", value = fit$delta)
updateSliderInput(session, "xi", value = fit$xi)
updateSliderInput(session, "lambda", value = fit$lambda)
updateRadioButtons(session, "type", selected = fit$type)
output$fittedParams <- DT::renderDT({
formatted_params <- sprintf("%.4f", fit[c("gamma", "delta", "xi", "lambda")])
formatted_params <- c(formatted_params, fit$type)
datatable(
data.frame(
Paramètre = c("γ", "δ", "ξ", "λ", "Type"),
Valeur = formatted_params
),
options = list(
searching = FALSE,
info = FALSE,
columnDefs = list(
list(
targets = c(1),
className = "dt-center"
)
)
)
)
})
output$histPlot_sample <- renderPlot({
observations <- data$x
df <- data.frame(x = observations)
bins <- length(hist(observations, breaks = "FD")$breaks)
p <- ggplot(df, aes(x)) +
geom_histogram(aes(y = after_stat(density)),
bins = bins,
fill = "lightblue",
color = "black"
) +
labs(
title = "Distribution de X",
x = "X",
y = "Densité"
) +
theme_minimal() +
theme(
axis.line = element_line(color = "black", linewidth = 0.5),
axis.text = element_text(size = 12),
axis.title = element_text(size = 14),
plot.title = element_text(size = 16, face = "bold"),
legend.position.inside = c(1, 1),
legend.justification = c(1, 1), # Justification for the position
legend.text = element_text(size = 12)
)
p <- p + stat_function(
fun = dnorm,
args = list(mean = mean(df$x), sd = sd(df$x)),
aes(color = "Normale"), show.legend = TRUE
) +
geom_density(aes(color = "Observée"), alpha = 0.3, show.legend = TRUE) +
scale_color_manual(
values = c("Normale" = "red", "Observée" = "darkblue"),
name = "Courbe...",
labels = c("Normale", "Observée")
) +
guides(color = guide_legend(override.aes = list(
linetype = c("solid", "solid"),
shape = c(NA, NA)
)))
print(p)
})
output$qqPlot_sample <- renderPlot({
observations <- data$x
df <- data.frame(Observations = observations)
ggplot(df, aes(sample = Observations)) +
geom_qq() +
geom_qq_line(color = "red", linetype = "dashed") +
labs(
title = "Distribution observée vs Distribution Normale",
x = "Quantiles théoriques (Normale)",
y = "Quantiles observés"
) +
theme_minimal() +
theme(
axis.line = element_line(color = "black", linewidth = 0.5),
axis.text = element_text(size = 12),
axis.title = element_text(size = 14),
plot.title = element_text(size = 16, face = "bold")
)
})
})
output$distPlot <- renderPlot({
params <- parms()
x_range <- qJohnson(c(0.001, 0.999), parms = params)
x <- seq(x_range[1], x_range[2], length.out = 1000)
y <- dJohnson(x, parms = params)
df <- data.frame(x = x, y = y)
ggplot(df, aes(x = x, y = y)) +
geom_line() +
labs(
title = paste("Distribution de Johnson - Type:", input$type),
x = "X",
y = "Densité"
) +
theme_minimal() +
theme(
axis.line = element_line(color = "black", linewidth = 0.5),
axis.text = element_text(size = 12),
axis.title = element_text(size = 14),
plot.title = element_text(size = 16, face = "bold")
)
})
output$qqPlot <- renderPlot({
params <- parms()
samples <- rJohnson(1000, parms = params)
theoretical_quantiles <- qJohnson(ppoints(1000), parms = params)
normal_quantiles <- qnorm(ppoints(1000), mean = mean(samples), sd = sd(samples))
df <- data.frame(
Theoretical_Normal_Quantiles = normal_quantiles,
Theoretical_Johnson_Quantiles = theoretical_quantiles
)
ggplot(df, aes(x = Theoretical_Normal_Quantiles, y = Theoretical_Johnson_Quantiles)) +
geom_point(color = "blue") +
geom_abline(intercept = 0, slope = 1, color = "red") +
labs(
title = "Distribution de Johnson vs Distribution Normale",
x = "Quantiles théoriques (Normale)",
y = "Quantiles théoriques (Johnson)"
) +
theme_minimal() +
theme(
axis.line = element_line(color = "black", linewidth = 0.5),
axis.text = element_text(size = 12),
axis.title = element_text(size = 14),
plot.title = element_text(size = 16, face = "bold")
)
})
output$statsOutput <- DT::renderDT({
params <- parms()
stats <- sJohnson(parms = params)
observations <- generate_observations()
stats_generated <- c(
mean = round(mean(observations), 4),
sd = round(sd(observations), 4),
skewness = round(moments::skewness(observations), 4),
kurtosis = round(moments::kurtosis(observations), 4)
)
df <- data.frame(
Statistiques = c("Moyenne", "Ecart-Type", "Symétrie", "Voussure"),
Théoriques = c(round(stats$Mean, 4), round(stats$SD, 4), round(stats$Skewness...sqrtB1, 4), round(stats$Kurtosis...B2.minus.3, 4)),
Observées = c(stats_generated["mean"], stats_generated["sd"], stats_generated["skewness"], stats_generated["kurtosis"])
)
rownames(df) <- NULL
options("digits" = 4)
datatable(df,
caption = htmltools::tags$caption(
style = "caption-side: bottom; text-align: center;",
htmltools::em(h4("Paramètres de la distribution théorique et statistiques des données générées"))
),
class = "cell-border stripe",
options = list(
info = TRUE,
paging = TRUE,
searching = FALSE,
autoWidth = TRUE,
columnDefs = list(list(width = "100px", targets = "_all"))
)
)
})
output$histPlot <- renderPlot({
observations <- generate_observations()
df <- data.frame(x = observations)
bins <- length(hist(observations, breaks = "FD")$breaks)
p <- ggplot(df, aes(x)) +
geom_histogram(aes(y = after_stat(density)),
bins = bins,
fill = "lightblue",
color = "black"
) +
labs(
title = "Distribution de X",
x = "X",
y = "Densité"
) +
theme_minimal() +
theme(
axis.line = element_line(color = "black", linewidth = 0.5),
axis.text = element_text(size = 12),
axis.title = element_text(size = 14),
plot.title = element_text(size = 16, face = "bold"),
legend.position = c(.55, .7),
legend.justification = c(-1, -1), # Justification for the position
legend.text = element_text(size = 12)
)
p <- p + stat_function(
fun = dnorm,
args = list(mean = mean(df$x), sd = sd(df$x)),
aes(color = "Normale"), show.legend = TRUE
) +
geom_density(aes(color = "Observée"), alpha = 0.3, show.legend = TRUE) +
scale_color_manual(
values = c("Normale" = "red", "Observée" = "darkblue"),
name = "Courbe...",
labels = c("Normale", "Observée")
) +
guides(color = guide_legend(override.aes = list(
linetype = c("solid", "solid"),
shape = c(NA, NA)
)))
print(p)
})
output$qqPlot_generated <- renderPlot({
observations <- generate_observations()
df <- data.frame(Observations = observations)
ggplot(df, aes(sample = Observations)) +
geom_qq() +
geom_qq_line(color = "red", linetype = "dashed") +
labs(
title = "Distribution observée vs Distribution Normale",
x = "Quantiles théoriques (Normale)",
y = "Quantiles observés"
) +
theme_minimal() +
theme(
axis.line = element_line(color = "black", linewidth = 0.5),
axis.text = element_text(size = 12),
axis.title = element_text(size = 14),
plot.title = element_text(size = 16, face = "bold")
)
})
# DOWNLOAD BUTTON
output$download_data <- downloadHandler(
filename = function() {
paste("datase-", Sys.Date(), ".csv", sep = "")
},
content = function(file) {
write.csv(generate_observations(), file)
}
)
}
shinyApp(ui = ui, server = server)