diff --git a/website/docs/docs/build/dimensions.md b/website/docs/docs/build/dimensions.md index b8679fe11b0..683ff730d3c 100644 --- a/website/docs/docs/build/dimensions.md +++ b/website/docs/docs/build/dimensions.md @@ -15,7 +15,8 @@ In a data platform, dimensions is part of a larger structure called a semantic m Groups are defined within semantic models, alongside entities and measures, and correspond to non-aggregatable columns in your dbt model that provides categorical or time-based context. In SQL, dimensions is typically included in the GROUP BY clause.--> -All dimensions require a `name`, `type` and in some cases, an `expr` parameter. +All dimensions require a `name`, `type` and in some cases, an `expr` parameter. The `name` for your dimension must be unique to the semantic model and can not be the same as an existing `entity` or `measure` within that same model. + | Parameter | Description | Type | | --------- | ----------- | ---- | diff --git a/website/docs/docs/build/entities.md b/website/docs/docs/build/entities.md index 464fa2c3b8c..e44f9e79af6 100644 --- a/website/docs/docs/build/entities.md +++ b/website/docs/docs/build/entities.md @@ -8,7 +8,7 @@ tags: [Metrics, Semantic Layer] Entities are real-world concepts in a business such as customers, transactions, and ad campaigns. We often focus our analyses around specific entities, such as customer churn or annual recurring revenue modeling. We represent entities in our semantic models using id columns that serve as join keys to other semantic models in your semantic graph. -Within a semantic graph, the required parameters for an entity are `name` and `type`. The `name` refers to either the key column name from the underlying data table, or it may serve as an alias with the column name referenced in the `expr` parameter. +Within a semantic graph, the required parameters for an entity are `name` and `type`. The `name` refers to either the key column name from the underlying data table, or it may serve as an alias with the column name referenced in the `expr` parameter. The `name` for your entity must be unique to the semantic model and can not be the same as an existing `measure` or `dimension` within that same model. Entities can be specified with a single column or multiple columns. Entities (join keys) in a semantic model are identified by their name. Each entity name must be unique within a semantic model, but it doesn't have to be unique across different semantic models. diff --git a/website/docs/docs/build/measures.md b/website/docs/docs/build/measures.md index 74d37b70e94..feea2b30ca4 100644 --- a/website/docs/docs/build/measures.md +++ b/website/docs/docs/build/measures.md @@ -34,7 +34,8 @@ measures: When you create a measure, you can either give it a custom name or use the `name` of the data platform column directly. If the `name` of the measure is different from the column name, you need to add an `expr` to specify the column name. The `name` of the measure is used when creating a metric. -Measure names must be **unique** across all semantic models in a project. +Measure names must be unique across all semantic models in a project and can not be the same as an existing `entity` or `dimension` within that same model. + ### Description