Skip to content

davidkorea/NLP_201811

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NLP_201811

attention transformer

seq2seq

word2vec

2019-09-10

spell correct

2019-02-21

windows 10 open image

  1. run regedit
  2. go to HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows Photo Viewer\Capabilities\FileAssociations
  3. create 문자열 값, .jpg,.png,.bmp,.gif
  4. copy the 값 of the exsited .tif to the new string keys above

2019-02-20

start to linux for tencent cloud

2019-02-19

linux edit text

  1. vim filepath
  2. i,foor insert
  3. Esc
  4. :wq,for saving changes
  5. :q!,for ignoring changes

2019-02-15

추워

2019-02-12

  1. Nice chrome attension for github octotree https://chrome.google.com/webstore/detail/octotree/bkhaagjahfmjljalopjnoealnfndnagc?hl=en-US

2019-02-12 nano-machine translation

InvalidArgumentError: Incompatible shapes: [21504] vs. [1024,21]

[[{{node metrics_1/acc/Equal}} = Equal[T=DT_FLOAT, 
	 _device="/job:localhost/replica:0/task:0/device:CPU:0"]
	 (metrics_1/acc/Reshape, metrics_1/acc/Cast)]]
  1. I get this error only when run my code on a GPU node (Tesla k80), ONLY on cpu
  2. I do not get the error for batch_size = 1
  3. I do not get the error when I do not use metrics=['accuracy'] in compile.
  4. I get the error only for some particular architecture
  5. All the problems reported above have problems with arrays of the same dimensionality [n1,n2] vs [m1,m2] but my case is [n] vs [n/r, r]
  1. error occurs on my local kernel on mac with tensorflow 1.12.0, keras 2.2.4
  2. no error on kaggle kernel with same version as above

2019-02-11

  1. https://github.com/modin-project/modin
DaviddeMBP:~ david$ source activate tensorflow
(tensorflow) DaviddeMBP:~ david$ pip install modin
  1. https://carbon.now.sh

  2. https://nteract.io/ download desktop app

  3. https://www.kite.com/

2019-02-04

come back home.. what to say...

Lets Make a Question Answering chatbot using the bleeding edge in deep learning (Dynamic Memory Network). We'll go over different chatbot methodologies, then dive into how memory networks work, with accompanying code in Keras.

Code + Challenge for this video: https://github.com/llSourcell/How_to_make_a_chatbot

Nemanja's Winning Code: https://github.com/Nemzy/language-translation/blob/master/neural_machine_translation.ipynb

Vishal's Runner up code: https://github.com/erilyth

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published