This repository has been archived by the owner on Mar 10, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.pyw
179 lines (157 loc) · 5.85 KB
/
main.pyw
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import time
import numpy as np
import pygubu
import tkinter as tk
from tkinter import *
from tkinter import messagebox
from tkinter.ttk import *
from bin.modules.ann_view import AnnView
from bin.modules.console import Console
from bin.modules.img_preprc import Image
from bin.modules.mouse import Mouse
from bin.modules.ann import Ann
from bin.neural_network.network import NeuralNetwork
# Application class
class Application(object):
# Constants
TITLE = "Handwritten Digits Classifier"
ICON = "res/images/favicon.ico"
GEOMETRY = (1018, 577)
GUI = "res/graphics/main.ui"
# Settings
ANN = "ann_2h12050_9702"
# Variables
preprc_pics = {}
# Constructor - creates and builds the main window
def __init__(self):
# Create window
self.window = tk.Tk()
# Set window geometry
self.window.update_idletasks()
frm_width = self.window.winfo_rootx() - self.window.winfo_x()
ttlbar_height = self.window.winfo_rooty() - self.window.winfo_y()
x = int((self.window.winfo_screenwidth() / 2) - ((self.GEOMETRY[0] + 2 * frm_width) / 2))
y = int((self.window.winfo_screenheight() / 2) - ((self.GEOMETRY[1] + frm_width + ttlbar_height) / 2))
self.window.geometry("%sx%s+%s+%s" % (self.GEOMETRY[0], self.GEOMETRY[1], x, y))
# Set window title and icon
self.window.title(self.TITLE)
self.window.wm_iconbitmap(self.ICON)
self.window.deiconify()
self.window.resizable(False, False)
# Build window graphics
builder = pygubu.Builder()
builder.add_from_file(self.GUI)
self.mainframe = builder.get_object("mainframe", self.window)
self.window.config(menu = builder.get_object("menu", self.window))
builder.connect_callbacks(self)
# Mapping canvases for preprocessing stages
self.stage_1 = builder.get_object("stage_1", self.window)
self.stage_2 = builder.get_object("stage_2", self.window)
self.stage_3 = builder.get_object("stage_3", self.window)
self.stage_4 = builder.get_object("stage_4", self.window)
self.stage_5 = builder.get_object("stage_5", self.window)
# Initializing console
self.console = Console(self.window, builder.get_object("console", self.window), builder.get_object("scrollbar_console", self.window))
# Mouse input (for drawing area)
self.drawing_area = builder.get_object("drawing_area", self.window)
self.drawing_area.bind("<B1-Motion>", Mouse.left_clicked_motion)
self.drawing_area.bind("<ButtonRelease-1>", Mouse.left_button_released)
# Keyboard shoortcuts
self.window.bind("<Control-c>", self.clear)
self.window.bind("<Control-p>", self.process)
self.window.bind("<Control-q>", self.quit)
# ANN
self.ann = Ann.unpickle("res/neural_network/" + self.ANN + ".pkl")
# ANN output area
self.ann_view = AnnView(self.window, builder.get_object("ann_view", self.window))
# Function that does the processing of the image
def process(self, event = None):
# Capture image
self.console.log("Image processing started ...")
self.console.log("Capturing image ...")
"""
# OLD CODE TO GET CANVAS CONTENT: DOESN'T WORK WITH HiDPI DISPLAYS
x1 = self.window.winfo_rootx() + self.drawing_area.winfo_x() + 10 + 1
y1 = self.window.winfo_rooty() + self.drawing_area.winfo_y() + 5 + 1
x2 = x1 + self.drawing_area.winfo_width() - 2
y2 = y1 + self.drawing_area.winfo_height() - 2
self.img = Image(x1, y1, x2, y2)
"""
self.img = Image(self.drawing_area)
# Grayscale
self.console.log("Grayscaling ...")
self.img.grayscale()
self.preprc_pics[0] = self.img.get((292, 292))
self.stage_1.create_image(1, 1, anchor = tk.NW, image = self.preprc_pics[0])
# If image is not empty
self.img.invert()
sum = np.sum(self.img.img)
self.img.invert()
if sum != 0:
# Colour inversion
self.console.log("Inverting ...")
self.img.invert()
self.preprc_pics[1] = self.img.get((140, 140))
self.stage_2.create_image(1, 1, anchor = tk.NW, image = self.preprc_pics[1])
# Cutting
self.console.log("Cutting ...")
self.img.cut()
self.preprc_pics[2] = self.img.get((140, 140))
self.stage_3.create_image(1, 1, anchor = tk.NW, image = self.preprc_pics[2])
# Resizing
self.console.log("Resizing ...")
self.img.resize()
self.preprc_pics[3] = self.img.get((140, 140))
self.stage_4.create_image(1, 1, anchor = tk.NW, image = self.preprc_pics[3])
# Centering
self.console.log("Centering ...")
self.img.center_of_mass()
self.preprc_pics[4] = self.img.get((140, 140))
self.stage_5.create_image(1, 1, anchor = tk.NW, image = self.preprc_pics[4])
# Classifying
self.classify()
# Log
self.console.log("Done.")
# If image is empty
else:
self.img.img = np.zeros((28, 28))
self.console.log("Error! Image was empty.")
self.window.after(1200, self.console.ready)
# Function that calls the neural network to classify the digit
def classify(self):
output = self.ann.feedforward(self.img.ready())
digit = np.argmax(output)
self.console.log("Elaborating digit ...")
self.ann_view.echo(output.reshape(10), digit)
# Function that clears the drawing area
def clear(self, event = None):
# Clear drawing area
self.drawing_area.delete("all")
# Clear all preprocessing stages
self.stage_1.delete("all")
self.stage_2.delete("all")
self.stage_3.delete("all")
self.stage_4.delete("all")
self.stage_5.delete("all")
# Delete references to preprocessing stages
self.preprc_pics = {}
# Delete AnnView
self.ann_view.clear()
# Log
self.console.log("Drawing area was cleared.")
# Function that runs the application
def run(self):
self.window.mainloop()
# Function that asks the user whether he is sure to quit application, then destroys the main window
def quit(self, event = None):
self.console.log("Quitting application ...")
answer = messagebox.askokcancel("Quit", "Are you sure you want to quit?")
if answer:
self.console.log("Done.")
self.window.destroy()
else:
self.console.log("Aborted.")
# Application instantiation and start
if __name__ == "__main__":
app = Application()
app.run()