-
Notifications
You must be signed in to change notification settings - Fork 0
/
elo_evaluator.py
85 lines (71 loc) · 2.92 KB
/
elo_evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
"""Evaluate a trained agent against different MCTS strengths."""
import argparse
import random
import ray
from ray import tune
from ray.tune.registry import register_env
from src.policies import HumanPolicy, MCTSPolicy, RandomPolicy
from src.utils import get_worker_config, get_learner_policy_configs, get_model_config, get_policy_config, EloRater
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--policy', type=str, default='PPO')
parser.add_argument('--num-learners', type=int, default=2)
parser.add_argument('--use-cnn', action='store_true')
parser.add_argument('--debug', action='store_true')
# e.g. --restore="/home/dave/ray_results/main/PPO_c4_0_2019-09-23_16-17-45z9x1oc9j/checkpoint_782/checkpoint-782"
parser.add_argument('--restore', type=str)
parser.add_argument('--human', action='store_true')
args = parser.parse_args()
ray.init(local_mode=args.debug)
tune_config = get_worker_config(args)
tune_config.update(get_policy_config(args.policy))
model_config, env_cls = get_model_config(args.use_cnn)
register_env('c4', lambda cfg: env_cls(cfg))
env = env_cls()
obs_space, action_space = env.observation_space, env.action_space
policies = get_learner_policy_configs(args.num_learners, obs_space, action_space, model_config)
player1, player2 = None, None
def policy_mapping_fn(agent_id):
global player1, player2
if agent_id == 0:
player1, player2 = random.sample([*policies], k=2)
return player1
else:
return player2
elo_rater = EloRater(policies.keys())
def elo_on_episode_end(info):
global elo_rater
agents = [agent[1] for agent in info['episode'].agent_rewards.keys()]
rewards = list(info['episode'].agent_rewards.values())
if rewards[0] == rewards[1]:
winner = 'draw'
elif rewards[0] > rewards[1]:
winner = agents[0]
else:
winner = agents[1]
ratings = elo_rater.rate(*agents, winner)
info['episode'].custom_metrics.update({'elo_' + k: v for k, v in ratings.items()})
tune.run(
args.policy,
name='elo_evaluator',
stop={
'timesteps_total': int(100e6),
},
config=dict({
'env': 'c4',
'env_config': {},
'multiagent': {
'policies_to_train': [*policies],
'policy_mapping_fn': policy_mapping_fn,
'policies': {
**policies,
'mcts': (MCTSPolicy, obs_space, action_space, {}),
'human': (HumanPolicy, obs_space, action_space, {}),
'random': (RandomPolicy, obs_space, action_space, {}),
},
},
'callbacks': {'on_episode_end': elo_on_episode_end},
}, **tune_config),
restore=args.restore,
checkpoint_at_end=True,
)