-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathexplore.py
328 lines (283 loc) · 12.9 KB
/
explore.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
#! /usr/bin/python2
# vim: set fileencoding=utf-8
"""Interactive exploration of data file."""
import codecs
from collections import OrderedDict, defaultdict, namedtuple
from math import log
import scipy.io as sio
import scipy.spatial as spatial
import scipy.cluster.vq as cluster
import numpy as np
import persistent
import CommonMongo as cm
import FSCategories as fsc
import AskFourquare as af
Surrounding = namedtuple('Surrounding', ['tree', 'venues', 'id_to_index'])
from utils import human_day, answer_to_dict, geodesic_distance
import itertools
import enum
Entity = enum.Enum('Entity', 'checkin venue user photo')
from random import sample
def increase_coverage(upto=5000):
"""Save `upto` unprocessed San Francisco tags"""
from more_query import get_top_tags
sup = persistent.load_var('supported')
more = get_top_tags(upto, 'nsf_tag.dat')
already = [v[0] for v in sup]
addition = set(more).difference(set(already))
persistent.save_var('addition', addition)
def read_entropies(grid=200, div=False):
"""Return a sorted dict of (tag, entropy or KL divergence)"""
filename = 'n{}entropies_{}.dat'.format('K' if div else '', grid)
with codecs.open(filename, 'r', 'utf8') as entropy:
lines = [i.strip().split() for i in entropy.readlines()[1:]]
entropies = sorted([(tag, float(val)) for val, tag in lines
if tag != '_background' and float(val) > 1e-5],
key=lambda x: x[1])
return OrderedDict(entropies)
def spits_latex_table(N=10):
N += 1
e = []
k = []
for grid in [200, 80, 20]:
tmp = read_entropies(grid)
print(grid, max(tmp.values()), 2*log(grid))
e.append(tmp.items()[:N])
e.append(tmp.items()[-N:])
tmp = read_entropies(grid, True)
k.append(tmp.items()[:N])
k.append(tmp.items()[-N:])
line = u'{} & {:.3f} & {} & {:.3f} & {} & {:.3f} \\\\'
# for i in range(N):
# print(line.format(e[0][i][0], e[0][i][1]/(2*log(200)),
# e[2][i][0], e[2][i][1]/(2*log(80)),
# e[4][i][0], e[4][i][1]/(2*log(20))))
# for i in range(N):
# print(line.format(e[1][i][0], e[1][i][1]/(2*log(200)),
# e[3][i][0], e[3][i][1]/(2*log(80)),
# e[5][i][0], e[5][i][1]/(2*log(20))))
for i in range(N-1, -1, -1):
print(line.format(k[1][i][0], k[1][i][1]/get_max_KL(200),
k[3][i][0], k[3][i][1]/get_max_KL(80),
k[5][i][0], k[5][i][1]/get_max_KL(20)))
for i in range(N-1, -1, -1):
print(line.format(k[0][i][0], k[0][i][1]/get_max_KL(200),
k[2][i][0], k[2][i][1]/get_max_KL(80),
k[4][i][0], k[4][i][1]/get_max_KL(20)))
def get_max_KL(grid=200):
"""Return maximum KL divergence with size `grid`."""
filename = 'freq_{}__background.mat'.format(grid)
count = sio.loadmat(filename).values()[0]
return -log(np.min(count[count > 0])/float(np.sum(count)))
def disc_latex(N=11):
line = u'{} & {:.3f} & {} & {:.3f} & {} & {:.3f} \\\\'
from rank_disc import top_discrepancy
t = [persistent.load_var('disc/all'),
persistent.load_var('disc/all_80'),
persistent.load_var('disc/all_20')]
supported = [v[0] for v in persistent.load_var('supported')]
d = zip(*[top_discrepancy(l, supported) for l in t])
display = lambda v: line.format(v[0][2], v[0][0], v[1][2], v[1][0],
v[2][2], v[2][0])
for v in d[:N]:
print(display(v))
for v in d[-N:]:
print(display(v))
def get_visitors(mongo, city=None, ball=None):
"""Return a sequence of [user] for each venue within `city` or `ball` =
((lng, lat), radius) by querying a `mongo` client."""
operation, _ = choose_query_type(mongo, Entity.venue)
location = get_spatial_query(Entity.venue, city, ball)
return query_for_visits(operation, location, 'tuid', mongo, city)
def get_visits(mongo, entity, city=None, ball=None):
"""Return a sequence of [timestamp] for each `entity` (venue or photo)
within `city` or `ball` = ((lng, lat), radius) by querying a `mongo`
client."""
operation, time = choose_query_type(mongo, entity)
location = get_spatial_query(entity, city, ball)
return query_for_visits(operation, location, time, mongo, city)
def choose_query_type(mongo, entity):
"""Return appropriate db operation and time field name."""
if entity == Entity.venue:
return mongo.foursquare.checkin.aggregate, 'time'
elif entity == Entity.photo:
return mongo.world.photos.find, 'taken'
else:
raise ValueError('choose venue or photo')
def get_spatial_query(kind, city, ball):
"""Return appropriate mongo geographical query operator."""
if city and city in cm.cities.SHORT_KEY:
return {('city' if kind == Entity.venue else 'hint'): city,
'lid': {'$ne': None}}
elif ball and len(ball) == 2:
center, radius = ball
center = {'type': 'Point', 'coordinates': list(center)}
ball = {'$geometry': center, '$maxDistance': radius}
return {'loc': {'$near': ball}}
else:
raise ValueError('choose city or ball')
def query_for_visits(operation, location, time, mongo, city):
"""Return a dict resulting of the call of `operation` with `location` and
`time` arguments."""
if 'find' in str(operation.im_func):
return answer_to_dict(operation(location, {time: 1}))
# $near is not supported in aggregate $match
if 'loc' in location:
ids = mongo.foursquare.venue.find({'city': city,
'loc': location['loc']}, {'_id': 1})
ids = [v['_id'] for v in ids]
location['lid'] = {'$in': ids}
del location['loc']
match = {'$match': location}
project = {'$project': {'time': '$'+time, 'lid': 1, '_id': 0}}
group = {'$group': {'_id': '$lid', 'visits': {'$push': '$time'}}}
query = [match, project, group]
convert = (lambda x: map(int, x)) if time == 'tuid' else None
return answer_to_dict(itertools.chain(operation(query)['result']), convert)
import Chunker
def collapse(values, chunk_size, offset=0):
"""Return sum of `values` by piece of `chunk_size` (starting from `offset`
and then cycling).
>>> collapse(range(6), 3)
array([ 3, 12])
>>> collapse(range(8), 2, 2)
array([ 5, 9, 13, 1])
>>> collapse([4, 0, 0, 0, 0, 2], 3, 1)
array([0, 6])
>>> collapse(range(6), 2, 1)
array([3, 7, 5])"""
values = list(values.ravel())
length = len(values)
assert length % chunk_size == 0, 'there will be leftovers'
# pylint: disable=E1101
chunker = Chunker.Chunker(chunk_size)
return np.array([sum(chunk)
for chunk in chunker(values[offset:]+values[:offset])])
def aggregate_visits(visits, offset=0, chunk=3, weights=None):
"""Transform a list of visits into hourly and daily pattern (grouping
hours by chunk of size `chunk`, starting from `offset`)."""
# pylint: disable=E1101
histo = lambda dim, size: np.bincount(timing[:, dim], weights,
minlength=size)
timing = np.array([(v.hour, human_day(v)) for v in visits])
return collapse(histo(0, 24), chunk, offset), histo(1, 7*3)
def to_frequency(data):
"""Take a list of lists and return the corresponding frequency matrix."""
#TODO handle division by 0
# pylint: disable=E1101
if hasattr(data, 'shape') and len(data.shape) == 1:
return data / np.sum(data, dtype=np.float)
totals = np.sum(data, 1)
nb_lines = len(data[0])
return data/np.tile(np.array([totals], dtype=np.float).T, (1, nb_lines))
def clusterize(patterns):
"""try to find the best k by running k means on pattern."""
whitened = cluster.whiten(patterns)
distorsion = [cluster.kmeans(whitened, i) for i in range(2, 24)]
return distorsion
def venues_activity(checkins, city, limit=None):
"""Return time pattern of all the venues in 'city', or only the 'limit'
most visited."""
query = cm.build_query(city, True, ['lid', 'time'], limit)
group = {'_id': '$lid', 'count': {'$sum': 1}, 'visits': {'$push': '$time'}}
query.insert(2, {'$group': group})
if isinstance(limit, int) and limit > 0:
query.insert(-1, {'$sort': {'count': -1}})
res = checkins.aggregate(query)['result']
hourly = []
weekly = []
for venue in res:
hour, day = aggregate_visits(venue['visits'])
hourly.append(hour)
weekly.append(day)
return hourly, weekly
def describe_venue(venues, city, depth=2, limit=None):
"""Gather some statistics about venue, aggregating categories at `depth`
level."""
query = cm.build_query(city, False, ['cat', 'likes'], limit)
group = {'_id': '$cat', 'count': {'$sum': 1}, 'like': {'$sum': '$likes'}}
query.extend([{'$group': group}, {'$sort': {'count': -1}}])
res = venues.aggregate(query)['result']
def parenting_cat(place, depth):
"""Return the category of `place`, without going beyond `depth`"""
_, path = fsc.search_categories(place['_id'])
if len(path) > depth:
return fsc.CAT_TO_ID[:path[depth]]
return fsc.CAT_TO_ID[:path[-1]]
summary = defaultdict(lambda: (0, 0))
nb_venues = 0
for venue in res:
if venue['_id'] is not None:
cat = parenting_cat(venue, depth)
count, like = venue['count'], venue['like']
nb_venues += count
summary[cat] = (summary[cat][0] + count, summary[cat][1] + like)
for cat, stat in summary.iteritems():
count, like = stat
summary[cat] = (100.0*count/nb_venues, count, like)
return OrderedDict(sorted(summary.items(), key=lambda u: u[1][0],
reverse=True))
def build_surrounding(venues, city, likes=5, checkins=30):
"""Return a scipy backed 2-d tree of venues in `city` with their
categories, provided that they have enough `likes` and `checkins`."""
assert city in cm.cities.SHORT_KEY, 'not a valid city'
res = list(venues.find({'city': city, 'likes': {'$gt': likes},
'checkinsCount': {'$gte': checkins}},
{'cat': 1, 'loc.coordinates': 1}))
indexing = fsc.bidict.bidict()
places = np.zeros((len(res), 3)) # pylint: disable=E1101
for pos, venue in enumerate(res):
numeric_category = 0 if not venue['cat'] else fsc.ID_TO_INDEX[venue['cat']]
lng, lat = venue['loc']['coordinates']
local_coord = cm.cities.GEO_TO_2D[city]([lat, lng])
places[pos, :] = (local_coord[0], local_coord[1], numeric_category)
indexing[pos] = venue['_id']
# pylint: disable=E1101
return Surrounding(spatial.KDTree(places[:, :2]), places, indexing)
def query_surrounding(surrounding, venue_id, radius=150):
"""Return the venues in `surrounding` closer than `radius` from
`venue_id`."""
from_index = lambda idx: surrounding.id_to_index[idx]
to_index = lambda vid: surrounding.id_to_index[:vid]
queried_index = to_index(venue_id)
full_venue = surrounding.venues[queried_index]
position = full_venue[:2]
neighbors = surrounding.tree.query_ball_point(position, radius)
return [from_index(i) for i in neighbors if i is not queried_index]
def alt_surrounding(venues_db, venue_id, radius=150):
position = venues_db.find_one({'_id': venue_id}, {'loc': 1})['loc']
ball = {'$geometry': position, '$maxDistance': radius}
neighbors = venues_db.find({'city': 'helsinki', 'loc': {'$near': ball},
'likes': {'$gt': 0},
'checkinsCount': {'$gte': 10}},
{'cat': 1, 'time': 1})
return [v['_id'] for v in neighbors if v['_id'] != venue_id]
def collect_similars(venues_db, client, city):
"""Find similars venues for 100 location in city, save the result in DB and
return matching venues that were already in DB."""
venues = answer_to_dict(venues_db.find({'city': city}, {'loc': 1}))
chosen = sample(venues.items(), 500)
distances = []
all_match = []
for vid, loc in chosen:
similars = af.similar_venues(vid, client=client)
if similars is None:
continue
else:
print(vid, similars)
venues_db.update({'_id': vid}, {'$set': {'similars': similars}})
matching = answer_to_dict(venues_db.find({'_id': {'$in': similars}},
{'loc': 1}))
all_match.append(matching)
distances.append([geodesic_distance(loc, sloc)
for sloc in matching.itervalues()])
return chosen, distances, all_match
if __name__ == '__main__':
import doctest
doctest.testmod()
# pylint: disable=C0103
import arguments
args = arguments.city_parser().parse_args()
city = args.city
db, client = cm.connect_to_db('foursquare', args.host, args.port)
checkins = db['checkin']