-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathapprox_emd.py
390 lines (352 loc) · 15.5 KB
/
approx_emd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
#! /usr/bin/python2
# vim: set fileencoding=utf-8
"""Try to find low EMD distance regions fast."""
from collections import defaultdict
from scipy.spatial.distance import cdist, pdist, squareform
from scipy.spatial import ConvexHull, cKDTree
from sklearn.cluster import DBSCAN
from warnings import warn
import itertools
import matplotlib as mpl
import matplotlib.pyplot as plt
import neighborhood as nb
import numpy as np
import persistent as p
import prettyplotlib as ppl
import report_metrics_results as rmr
import ujson
from shapely.geometry import Polygon
from timeit import default_timer as clock
# load data
with open('static/ground_truth.json') as infile:
gold_list = ujson.load(infile)
districts = sorted(gold_list.iterkeys())
cities = sorted(gold_list[districts[0]]['gold'].keys())
cities_desc = {name: nb.cn.gather_info(name, raw_features=True,
hide_category=True)
for name in cities}
WHICH_GEO = []
def profile(f):
return f
@profile
def test_all_queries(queries, query_city='paris', n_steps=5, k=50):
"""Run all `queries` from `query_city`, expanding each recover region by
`n_steps`-1. Return the list of all distances, corresponding computation
time and a dictionary with the best results that can be feed to a DCG
computer."""
all_res = []
timing = []
raw_result = defaultdict(lambda: defaultdict(list))
biased_raw_result = defaultdict(lambda: defaultdict(list))
for query in queries:
target_city, district = query
possible_regions = gold_list[district]['gold'].get(query_city)
gold = [set(_['properties']['venues'])
for _ in gold_list[district]['gold'].get(target_city, [])]
region = nb.choose_query_region(possible_regions)
if not region:
all_res.append([])
timing.append([])
continue
start = clock()
infos = nb.interpret_query(query_city, target_city, region, 'emd')
_, right, _, regions_distance, _, _ = infos
vindex = np.array(right['index'])
# print(query)
vloc = cities_venues[target_city]
infos = retrieve_closest_venues(district, query_city, target_city, k)
candidates, gvi, _ = infos
# xbounds = np.array([vloc[:, 0].min(), vloc[:, 0].max()])
# ybounds = np.array([vloc[:, 1].min(), vloc[:, 1].max()])
# hulls = [vloc[tg, :][ConvexHull(vloc[tg, :]).vertices, :]
# for tg in gvi]
eps, mpts = 210, 18 if len(vloc) < 5000 else 50
clusters = good_clustering(vloc, list(sorted(candidates)), eps, mpts)
# plot_clusters(clusters, candidates, (xbounds, ybounds), vloc, hulls,
# 0.65)
res = []
areas = []
for cluster in clusters:
venues_areas = cluster_to_venues(cluster, vloc,
cities_kdtree[target_city],
n_steps)
if len(venues_areas) == 0:
continue
for venues in venues_areas:
vids = vindex[venues]
venues = right['features'][venues, :]
dst = regions_distance(venues.tolist(),
nb.weighting_venues(venues[:, 1]))
res.append(dst)
areas.append({'venues': set(vids),
'metric': 'femd', 'dst': dst})
# TODO if after a few steps, we are not getting closer to the
# current minimum distance, we may want to break the loop to
# avoid further EMD calls (although it could hurt relevance
# later as they are not well correlated).
timing.append(clock() - start)
venues_so_far = set()
gold_venues = sum(map(len, gold))
rels = [-1 if gold_venues == 0 else rmr.relevance(a['venues'], gold)
for a in areas]
# print(np.sort(rels)[::-1])
# Obviously the line below is cheating, we should order by
# distance and not by how good we know the result is.
for idx in np.argsort(res):
cand = set(areas[idx]['venues'])
if not venues_so_far.intersection(cand):
venues_so_far.update(cand)
else:
continue
raw_result[target_city][district].append(areas[idx])
if len(raw_result[target_city][district]) >= 5:
break
outfile = 'static/{}_{}_{}_femd.json'.format(query_city, district,
target_city)
venues_so_far = set()
for idx in np.argsort(rels)[::-1]:
cand = set(areas[idx]['venues'])
if not venues_so_far.intersection(cand):
venues_so_far.update(cand)
else:
continue
biased_raw_result[target_city][district].append(areas[idx])
if len(biased_raw_result[target_city][district]) >= 5:
break
# WHICH_GEO.append(np.argmin(res) % len(venues_areas))
all_res.append(res)
return all_res, timing, raw_result, biased_raw_result
@profile
def cluster_to_venues(indices, vloc, kdtree, n_steps=5):
# Given a cluster (ie a set of venues indices), it should return
# neighborhoods (ie compact/complete sets of venues indices) that will be
# evaluated by EMD.
# Given how DBSCAN works, most of these clusters look rather convex, so
# convex hull could be a good option. Otherwise, I could use CGAL binding
# to get alpha shapes. Then I can consider bounding box (called envelope
# by Shapely) or circle. Finally, some dilation and erosion of the
# previous shapes.
# I can also add or remove individual points (but it's unclear which one,
# see notebook) while maintaining more or less neighborhood property.
# Get initial polygon
points = vloc[indices, :]
try:
hull = points[ConvexHull(points).vertices, :]
except (KeyboardInterrupt, SystemExit):
raise
except:
print(indices)
return []
poly = Polygon(hull)
center = np.array(poly.centroid.coords)
# Query neighboring venues
radius = np.max(cdist(np.array(poly.exterior.coords), center))
cd_idx = kdtree.query_ball_point(center, 2.0*radius)[0]
# Build increasing regions
inc = 1.0*radius/n_steps
extensions = [poly]
extensions += [poly.buffer(i*inc,
resolution=2).convex_hull.simplify(30, False)
for i in range(1, n_steps+1)]
# Get venues inside them
remaining = set(cd_idx)
inside = set([])
res_cluster = []
for region in extensions:
if region.exterior is None:
continue
cpoly = np.array(region.exterior.coords)
inside_this = set([idx for idx in remaining
if point_inside_poly(cpoly, vloc[idx, :])])
remaining.difference_update(inside_this)
inside.update(inside_this)
res_cluster.append(list(inside))
return res_cluster
def get_candidates_venues(query_features, target_features, k=50):
"""Return the set of all `k` closest venues from `query_features` to
`target_features`."""
distances = cdist(query_features, target_features)
ordered = np.argsort(distances, 1)
return set(ordered[:, :k].ravel())
def retrieve_closest_venues(district, query_city, target_city, k=50):
"""For the given query, return a list of venues indices for knn level of
`k`, as well as a list of indices for each gold area and the threshold
number of venues."""
gold = gold_list[district]['gold']
query = gold[query_city][0]
query_venues = query['properties']['venues']
mask = np.where(np.in1d(cities_desc[query_city]['index'], query_venues))[0]
query_features = cities_desc[query_city]['features'][mask, :]
all_target_features = cities_desc[target_city]['features']
tindex = cities_desc[target_city]['index']
if target_city in gold:
gold_venue_indices = [np.where(np.in1d(tindex,
reg['properties']['venues']))[0]
for reg in gold[target_city]
if len(reg['properties']['venues']) >= 20]
else:
gold_venue_indices = []
if not gold_venue_indices:
msg = '{} in {} has no area with at least 20 venues'
warn(msg.format(district, target_city.title()))
# return None, None, None
candidates = get_candidates_venues(query_features, all_target_features, k)
threshold = int(len(tindex)*1.0*len(query_venues) /
len(cities_desc[query_city]['index']))
return candidates, gold_venue_indices, threshold
def f_score(recall, precision, beta=2.0):
return (1+beta*beta)*(recall * precision)/(beta*beta*precision + recall)
def point_inside_poly(poly, point):
"""Tell whether `point` is inside convex `poly` based on dot product with
every edges:
demonstrations.wolfram.com/AnEfficientTestForAPointToBeInAConvexPolygon/
"""
tpoly = poly - point
size = tpoly.shape[0] - 1
angles = tpoly[1:, 0]*tpoly[:size, 1] - tpoly[:size, 0]*tpoly[1:, 1]
return int(np.abs(np.sign(angles).sum())) == size
# load venues location for all cities
cities_venues_raw = {name: p.load_var(name+'_svenues.my') for name in cities}
cities_venues = {}
cities_index = {}
cities_kdtree = {}
for city in cities:
vids, _, locs = cities_venues_raw[city].all()
vindex = cities_desc[city]['index']
cities_venues[city] = np.zeros((len(vindex), 2))
cities_index[city] = dict(itertools.imap(lambda x: (x[1], x[0]),
enumerate(vindex)))
for vid, loc in itertools.izip(vids, locs):
pos = cities_index[city].get(vid)
if pos is not None:
cities_venues[city][pos, :] = loc
cities_kdtree[city] = cKDTree(cities_venues[city])
gray = '#bdbdbd'
red = '#e51c23'
green = '#64dd17'
blue = '#03a9f4'
orange = '#f57c00'
def evaluate_clustering(labels, candidates_indices, gold_indices_list):
fscores = []
n_clusters = len(set(labels)) - (1 if -1 in labels else 0)
for k in range(n_clusters):
best_score = np.nan
for idx, tg in enumerate(gold_indices_list):
relevant = np.sum(np.in1d(candidates_indices[labels == k], tg))
precision = relevant*1.0 / candidates_indices[labels == k].size
recall = relevant*1.0 / len(tg)
fscore = f_score(recall, precision, beta=1.0)
if not np.isnan(fscore):
if np.isnan(best_score):
best_score = fscore
else:
best_score = max(fscore, best_score)
# fscores.append(fscore)
fscores.append(best_score)
assert len(fscores) == n_clusters
# mean of F1-score of best gold, 0 if nan (ie precision = 0)
return [np.mean(np.nan_to_num(fscores)), n_clusters]
QUERIES = itertools.product(cities, districts)
ALL_Q = [(city, district) for city, district in QUERIES
if city not in ['paris', 'berlin'] and
city in gold_list[district]['gold'] and
[1 for reg in gold_list[district]['gold'][city]
if len(reg['properties']['venues']) >= 20]]
def cluster_is_small_enough(max_length, max_venues, vloc):
"""Make sure than `vlocs` is within acceptable constraints in terms of space
and number of venues."""
if len(vloc) > max_venues:
return False
dim_x, dim_y = [vloc[:, _].max() - vloc[:, _].min() for _ in [0, 1]]
return all([dim <= max_length for dim in [dim_x, dim_y]])
def good_clustering(locs, cands, eps, mpts):
"""Return a list of list of indices making up clusters of acceptable
size."""
clocs = locs[cands, :]
pwd = squareform(pdist(clocs))
clusters_indices = recurse_dbscan(pwd, np.arange(len(cands)), clocs,
eps, mpts)
depth = 0
while not clusters_indices and depth < 5:
eps, mpts = eps*1.3, mpts/1.4
clusters_indices = recurse_dbscan(pwd, np.arange(len(cands)), clocs,
eps, mpts)
depth += 1
cands = np.array(cands)
return [cands[c] for c in clusters_indices]
def recurse_dbscan(distances, indices, locs, eps, mpts, depth=0):
"""Do a first DBSCAN with given parameters and if some clusters are too
big, recluster them using stricter parameters."""
# msg = '{}Cluster {} points with ({}, {})'
# instead http://stackoverflow.com/a/24308860
# print(msg.format(depth*'\t', len(indices), eps, mpts))
pwd = distances
mpts = int(mpts)
labels = DBSCAN(eps=eps, min_samples=int(mpts),
metric='precomputed').fit(pwd).labels_
cl_list = []
for k in np.unique(labels):
if k == -1:
continue
k_indices = np.argwhere(labels == k).ravel()
if cluster_is_small_enough(1.5e3, 250, locs[k_indices, :]):
# msg = '{}add one cluster of size {}'
# print(msg.format(depth*'\t'+' ', len(k_indices)))
cl_list.append(indices[k_indices])
else:
if depth < 3:
sub_pwd = pwd[np.ix_(k_indices, k_indices)]
sub_locs = locs[k_indices, :]
sub_indices = recurse_dbscan(sub_pwd, k_indices, sub_locs,
eps/1.4, mpts*1.3, depth+1)
cl_list.extend([indices[c] for c in sub_indices])
else:
warn('Cannot break one cluster at level {}'.format(depth))
return cl_list
def plot_clusters(clusters, candidates, bounds, vloc, hulls, shrink=0.9):
"""Plot all `clusters` among `candidates` with the `bounds` of the city
(or at least `shrink` of them). Also plot convex `hulls` of gold areas if
provided."""
xbounds, ybounds = bounds
unique_labels = len(clusters)
clustered = set().union(*map(list, clusters))
noise = list(candidates.difference(clustered))
if unique_labels > 5:
colors = mpl.cm.Spectral(np.linspace(0, 1, unique_labels+1))
else:
colors = [gray, red, green, blue, orange]
plt.figure(figsize=(20, 15))
for k, indices, col in zip(range(unique_labels+1), [noise]+clusters,
colors):
k -= 1
if k == -1:
col = 'gray'
ppl.scatter(vloc[indices, 0], vloc[indices, 1],
s=35 if k != -1 else 16, color=col,
alpha=0.8 if k != -1 else 0.6,
label='noise' if k == -1 else 'cluster {}'.format(k+1))
hulls = hulls or []
for idx, hull in enumerate(hulls):
first_again = range(len(hull))+[0]
ppl.plot(hull[first_again, 0], hull[first_again, 1], '--',
c=ppl.colors.almost_black, lw=1.0, alpha=0.9,
label='gold region' if idx == 0 else None)
plt.xlim(shrink*xbounds)
plt.ylim(shrink*ybounds)
ppl.legend()
if __name__ == '__main__':
import sys
sys.exit()
query_city, target_city, district = 'paris', 'barcelona', 'triangle'
vloc = cities_venues[target_city]
xbounds = np.array([vloc[:, 0].min(), vloc[:, 0].max()])
ybounds = np.array([vloc[:, 1].min(), vloc[:, 1].max()])
infos = retrieve_closest_venues(district, query_city, target_city)
top_venues, gold_venues_indices, threshold = infos
gold_venues = set().union(*map(list, gold_venues_indices))
candidates = top_venues
hulls = [vloc[tg, :][ConvexHull(vloc[tg, :]).vertices, :]
for tg in gold_venues_indices]
eps, mpts = 210, 18
sclidx = good_clustering(vloc, list(sorted(candidates)), eps, mpts)
print(np.array(map(len, sclidx)))